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Abstract. Detecting BK Virus (BKV) is crucial for managing post-
transplant outcomes in kidney patients. While BKV is typically iden-
tified using SV40 immunohistochemistry (IHC), this method is time-
consuming, limited by tissue availability and resource-intensive, espe-
cially in low-resource settings. Recent advances in computational pathol-
ogy have shown potential for automating disease detection from Hema-
toxylin and Eosin (H&E)-stained images, though BKV detection remains
understudied due to its low prevalence and limited data. We hypothe-
size that BKV-positive cells exhibit unique morphological patterns in
H&E-stained tissue, detectable via computational methods. To address
this, we developed BKVision, a weakly-supervised deep learning model
for BKV detection in H&E whole-slide images (WSIs). Trained on 3,734
WSIs, BKVision achieves an F1-score of 0.984 ± 0.008 on a test cohort
of 936 slides. Additionally, we conducted a morphological analysis on
774 H&E image patches, extracting 37 human interpretable features and
validating them against IHC with pathologist guidance. This identified
11 cell attributes, such as nuclear enlargement and chromatin texture
changes, that distinguish BKV-positive from negative cases. These find-
ings highlight the potential to enhance BKV diagnostic criteria by inte-
grating these identified morphological features. BKVision demonstrates
the potential of computational methods to provide accurate, accessible,
and interpretable BKV detection without the need for IHC, offering a
cost-effective alternative in low-resource settings while revealing key mor-
phological features of BKV infection.

Keywords: Renal Allograft · Deep Learning · Human-interpretable Biomark-
ers.



2 S. Sahai et al.

1 Introduction

Transplantation significantly improves survival for patients with end-stage organ
failure; however, it is associated with risks such as BK virus (BKV) reactivation
due to immunosuppression[6, 19]. BKV, a dormant polyomavirus in the kidney
and urinary tract, can cause nephropathy and lead to the loss of the transplant
if not promptly detected and managed [6]. The incidence of BKV reactivation
within the first year post-kidney transplantation is approximately 5%[26]. No-
tably, BKV detection is not limited to renal transplant recipients; it also poses a
challenge in non-renal transplant patients (e.g., lung, heart), where it can affect
native kidneys[2, 8, 9]. The absence of routine BKV-specific staining and reliable
biomarkers often results in delayed diagnosis and poorer clinical outcomes[2, 9].

The current standard for diagnosing BKV in renal transplant biopsies re-
lies on immunohistochemistry (IHC) SV40 staining [19]. However, IHC staining
is time-consuming, consumes limited diagnostic material, and requires special-
ized laboratory infrastructure, making it particularly challenging in low-resource
settings [19]. Furthermore, the low prevalence of BKV has hindered the explo-
ration of computational approaches for its diagnosis, resulting in a significant
research gap. While automated identification of BKV remains underexplored,
this gap arises primarily from challenges in data acquisition rather than a lack
of clinical significance. BKV detection on H&E-stained slides presents significant
diagnostic difficulties, necessitating additional IHC confirmation, which increases
turnaround times and costs. Despite its rarity, the identification of BKV is crit-
ical for improving transplant efficacy, as delayed diagnosis can lead to graft loss
and adverse patient prognoses.

In contrast to SV40 staining, which is costly and susceptible to sampling
errors, Hematoxylin and Eosin (H&E) staining is routinely performed on multi-
ple tissue blocks during standard clinical care for renal transplant patients [1].
Therefore, an automated approach for BKV detection directly from H&E could
provide a cost-effective and scalable solution for widespread screening. To ad-
dress this need, we introduce BKVision, the first weakly-supervised deep learning
model for BKV detection in H&E whole-slide images (WSIs). Our method not
only detects BKV but also emphasizes interpretability by identifying human-
interpretable morphological features linked to BKV-positive cells (Figure 1).

In summary, our contributions are (1) we present the first weakly-supervised
classification model for BKV detection in H&E whole-slide images; (2) we pro-
pose a method for morphological characterization of BKV in H&E; identifying
11 human-interpretable features linked to BKV-positive cells; and (3) we demon-
strate that the identified biomarkers align with BKV-positive regions confirmed
by IHC and validated by expert clinicians.

2 Related Work

AI-assisted diagnosis and automatic classification of H&E-stained histology im-
ages have demonstrated superior performance to pathologists for common dis-
eases when enough data is available [10, 21, 3, 4, 24, 25]. Deep learning (DL) has
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also shown promise in renal allograft tissue for quantification of relevant struc-
tures such as atrophic tubules and disease classification [20, 15]. However, these
efforts have predominantly focused on prevalent conditions such as rejection,
leaving a critical gap in the automated detection of rare but clinically signifi-
cant infections like BKV. Despite the advent of new DL technologies, only one
prior study has explored BKV detection from histology [20], and its ability to
distinguish BKV from other diseases, particularly rejection, remains limited.

The detection of BKV is critical for treatment direction in transplant pa-
tients, yet is complicated by the virus’s low prevalence and potential limited
tissue availability, resulting in notable scarcity of both computational and clin-
ical studies [19, 7, 20]. Conventional strategies for BKV detection have explored
avenues outside histopathological examination, relying on serological assays, clin-
ical parameters [22], or single-cell analysis [27]. However, these methods diverge
from the direct examination of histological samples, which remains the gold
standard for diagnosing pathologies in transplant medicine. These observations
underscore the interest in diagnostic tools tailored to BKV detection from the
tissue morphology.

Recent research related to foundational models in computational pathol-
ogy has demonstrated robust performance in downstream vision and visual
language tasks [29]. Combining low-dimensional feature representations for gi-
gapixel whole slide images (WSI) and semantic spatial analysis [18] introduces a
new generation of diagnostic tools that improve both accuracy and interpretabil-
ity in transplant pathology. Our study aims to address the gap in BKV detection
by combining deep learning enhanced by state of the art foundational models
with morphological analysis, providing an effective and accessible approach to
identifying BKV in renal transplant recipients.

3 Methods

3.1 Patch encoding

Given an H&E-stained slide as input, we follow the multiple instance learning
(MIL) paradigm [16], which consists of segmenting tissue regions, tesselating
the tissue into patches, and extracting patch embeddings using a pre-trained
feature encoder. Specifically, we extract non-overlapping 256×256 patches, which
we encode using four feature encoders: ResNet50 [14] pre-trained on ImageNet,
CTransPath [28] pre-tranined on TCGA and PAIP dataset, and CONCH [23] and
UNI2-h [5], both pre-trained on proprietary datasets. We denote the resulting
patch embeddings as fs ∈ RNs×d, where Ns is the number of patches in the slide
s, and d is the embedding dimension.

3.2 Slide classification

To generate slide predictions from patch embeddings, we use the clustering-
constrained attention multiple instance learning (CLAM) architecture [24]. CLAM
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FIGURE 1

Fig. 1. Overview of BKVision. a. BKV detection from H&E-stained histological
sections is accomplished through weakly supervised attention-based multiple instance
learning (ABMIL). b. Quantitative analysis of cellular morphology to identify human-
interpretable features linked to BKV, with validation on SV40 immunohistochemistry
staining.

uses a trainable slide-level pooling function ϕ that learns to generate attention
weights α for each patch-level feature and takes a weighted sum of the patch
features as the slide-level feature Fs ∈ R1×1024 for ResNet50, Fs ∈ R1×768 for
CTransPath, Fs ∈ R1×512 for CONCH, and Fs ∈ R1×1536 for UNI2-h. Formally,
Fs =

∑Ns

n=1 αnfs,n where αn = ϕ(fs,n) and fs,n represents the nth patch fea-
ture in fs. The slide-level feature Fs is used to predict logits for the positive class
via a classification head. In addition to the cross-entropy objective, CLAM uses
a patch-level clustering loss to encourage the linear separation of high-attention
patches from low-attention patches.

3.3 Post-hoc morphological analysis

The morphological manifestations of BKV infection in renal tissues are often
subtle, presenting challenges for traditional histopathological analysis in H&E.
To address this, we leveraged ranked patches from our attention-based model
to automatically identify regions likely to contain infected cells and characterize
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the morphological changes driving patient stratification. Fine-grained attention
heatmaps were generated using the attention-pooling operation of CLAM, by
patching the original slide with 0.5 overlap and computing attention weights for
these overlapping patches.

Corresponding SV40 WSIs from BKV-positive cases were used to validate
that H&E patches highlighted by the model correlated with BKV-positive re-
gions or exhibited infection-related morphological changes. Adjacent SV40-H&E
images were elastically registered [12] to correct for rotations and deforma-
tions during slide mounting. An expert pathologist annotated nuclei in highly-
attended H&E patches suspected of infection.

Nuclei from the top 30 high-attention patches associated with positive BKV
cases in the held-out set were segmented using the HoVerNet model [13] pre-
trained on the PanNuke dataset [11]. In consultation with pathologists, we ex-
tracted 37 human-interpretable features from the histocartography library [17],
selected for their relevance to BKV detection, related to nuclear morphology, size,
shape, and topology. These features were compared to those obtained from an-
notated representative regions of BKV-negative subjects. Features significantly
differing between positive and negative cases were identified using unpaired t-
tests (p-value < 0.05) and log2 fold change (FC) ratios (log2FC >|0.6|, or ≈ 50%
increase compared to baseline), with Bonferroni correction for multiple hypoth-
esis testing.

3.4 Dataset description

BKVision was developed on a cohort of 4,679 WSIs from 1,077 renal allograft
biopsy cases collected from 2013-2022. Of these cases, 39 were positive, and 1,038
were negative for BKV. The dataset includes a diverse range of pathologies,
with 39% of cases involving rejection, the most common differential diagnosis
for BKV, ensuring representation of the patient population. Each case includes
1 to 6 H&E slides. For 225 cases, a single SV40 stain was performed in consec-
utive serial sections to the H&E, prompted by elevated BKV viremia levels in
plasma, indicating a potential BKV infection. A selection of these SV40 stains
was utilized for post-training evaluation and analysis. All slides were scanned at
20× on a Hamamatsu S210. BKV diagnosis was determined by an expert renal
pathologist, initially based on the BKV viral load in plasma. If the viral load
suggested a potential infection, further confirmation was sought by examining
the presence of infected nuclei in the corresponding SV40 stains of the cases
under investigation.

3.5 Split and data augmentation

The dataset was partitioned into train/validation/test splits (70%/10%/20%)
stratified by the presence of BKV, with all slides from the same patient biopsy
placed into the same set. We performed 5-fold cross-validation and reported the
mean and standard error on the test set. The final cohort comprises 3, 743 slides
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Table 1. Weakly supervised BKV classification in H&E. Performance metrics
at the patient level in the independent held-out set with the minority class upsampled
by 0%, 40%, 100%, or 140% (UR, %) for ResNet50 (RN50), CTransPath (CTP), UNI2-
h and CONCH encoders.

UR F1 Score Precision Recall Bal ACC AUC

RN50

0 0.973±0.006 0.972±0.004 0.977±0.009 0.664±0.030 0.925±0.014
40 0.965±0.012 0.963±0.003 0.972±0.023 0.581±0.072 0.935±0.025
100 0.973±0.011 0.972±0.002 0.977±0.019 0.664±0.045 0.933±0.016
140 0.965±0.016 0.963±0.003 0.972±0.025 0.581±0.038 0.931±0.030

CTP

0 0.973±0.006 0.972±0.002 0.977±0.001 0.664±0.030 0.944±0.062
40 0.973±0.005 0.972±0.002 0.977±0.009 0.664±0.044 0.911±0.032
100 0.979±0.006 0.979±0.001 0.981±0.001 0.748±0.008 0.855±0.033
140 0.979±0.012 0.979±0.005 0.981±0.018 0.748±0.035 0.891±0.023

UNI2-h

0 0.962±0.012 0.967±0.003 0.958±0.019 0.736±0.013 0.892±0.063
40 0.968±0.020 0.970±0.005 0.967±0.033 0.740±0.022 0.831±0.080
100 0.968±0.007 0.970±0.001 0.967±0.011 0.740±0.012 0.849±0.060
140 0.979±0.007 0.979±0.004 0.981±0.010 0.748±0.016 0.878±0.080

CONCH

0 0.972±0.005 0.972±0.003 0.972±0.009 0.743±0.033 0.926±0.044
40 0.979±0.006 0.979±0.003 0.981±0.010 0.748±0.027 0.878±0.081
100 0.959±0.017 0.966±0.004 0.953±0.027 0.733±0.028 0.942±0.048
140 0.984±0.008 0.986±0.001 0.986±0.015 0.750±0.044 0.917±0.059

(864 patients) in the train-val set and 936 slides (213 patients) in the indepen-
dent test set. Due to the extreme class imbalance in the data (less than 4%
positive BKV slides), we applied upsampling of the minority class. Specifically,
during training, we upsampled the BKV-positive class at the slide-level (n=130
slides) by adding more positive-case patches into each batch during training.
This approach ensured a more balanced representation of BKV-positive cases,
improving the model’s ability to learn relevant morphological patterns.

3.6 Implementation details

Our model underwent training across 200 epochs, incorporating an early stop-
ping mechanism to prevent overfitting. We used a batch size of 1, optimizing
the training process with the Adam optimizer, set at a learning rate of 0.0002
and a weight decay rate of 0.00001. Nvidia RTX 3090 GPUs were used. Rec-
ognizing the potential variability in BKV cell distribution across different slides
from the same patient, our classification strategy into BKV positive or negative
categories was based on the maximum probability observed among all slides per
patient, ensuring a comprehensive and sensitive detection approach. The classi-
fication threshold was determined by the validation cohort, specifically chosen
to maximize the mean F1 score across all validation folds for each model.
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Fig. 2. Morphological characterization of BKV in H&E imaging. a. Visualiza-
tion of BKV positive H&E slide with corresponding attention heatmap and adjacent
IHC slide. b. Example of a highly attended H&E patch with registered IHC patch.
Nuclear segmentation highlights BKV-positive nuclei (yellow) vs. other cells (blue).
Nuclear area distribution in that patch. c. Log2 fold change of 37 human-interpretable
features. Features in blue and red are statistically different than the control (t-test:
p< 0.001 with log2FC values>|0.6|, or 50% increase from control). d. Heatmap (log2
Fold Change) summarising BKV positive features relative to BKV negative (control).
Rows represent test patients. e. Human-interpretable features characterizing BKV mor-
phology (p-value < 0.001 indicated with *).
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4 Results

4.1 Classification

To identify an effective experimental setup, we tested various encoders and mi-
nority class upsampling rates (0%, 40%, 100%, 140%). The combination of ex-
treme upsampling (140%) with the CONCH patch encoder achieved the highest
classification performance across multiple metrics, including F1 score, precision,
recall, and balanced accuracy (Table 1). While the CTransPath baseline (0%
upsampling) performed best in terms of AUC, this metric is less reliable for
imbalanced datasets.

The results indicate that CONCH outperforms ResNet50, CTransPath, and
UNI2-h in extracting representative features of BKV infection, likely due to
its training on more diverse pathological data. The overrepresentation of BKV-
positive cases also improves detection of infection-related morphological patterns
in H&E-stained histology, while maintaining accuracy for BKV-negative cases.

4.2 Nuclear characterization

Among the 37 features analyzed, 11 exhibited statistically significant differences
between BKV-positive and BKV-negative cases. These included size-related met-
rics such as nuclear area, perimeter, and equivalent diameter, which were signif-
icantly larger in BKV-positive cells (Fig. 2d-e). Additionally, cells within high-
attention patches showed a more uniform texture and reduced intensity variance
(GLCM homogeneity and contrast), consistent with the hyperchromatic and
“ground glass” appearance characteristic of BKV-infected nuclei. These findings
align with nuclear enlargement and morphological changes in BKV infection [19].

Interpretable visualization plays a pivotal role in our approach. Heatmaps
generated from attention weights identified regions highly predictive of BKV in-
fection, capturing cellular-level pathological changes such as tubular cell injury
and lymphoplasmacytic inflammation. Validation through co-registered SV40
IHC images confirmed the alignment of high-attention regions with BKV-positive
cells (Fig. 2a). Pathologist annotations of infected cells, guided by SV40 IHC,
further corroborated distinct topological features, particularly variations in cell
size, distinguishing BKV-infected from healthy cell populations (Fig. 2b). No-
tably, BKV-infected nuclei were characterized by their enlargement within the
tubular epithelium, consistent with prior clinical observations [19].

5 Conclusion

Our study demonstrates high-performance detection of BKV in renal transplant
recipients using solely H&E-stained WSIs, providing a preliminary screening
tool that could reduce reliance on specialized SV40 IHC tests. This approach
accelerates diagnosis and improves accessibility, particularly in resource-limited
settings. Through post-hoc analysis, we identified human-interpretable morpho-
logical features, such as nuclear area and chromatin density, validated against
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IHC-stained sections and expert pathologist assessments. These features serve
as reliable markers for BKV infection and could immediately influence clinical
decision-making, enabling pathologists to refine diagnostic criteria and guide
treatment decisions. To promote reproducibility, we have detailed our methodol-
ogy, including parameter training details, and will open-source training scripts.
Data and model weights can be provided upon institutional approval. As a pre-
liminary study, future work should explore other architectures to enhance per-
formance and generalizability. Formal evaluation of the identified biomarkers is
needed to validate their efficacy across diverse populations. Our work not only
improves BKV detection but also serves as a blueprint for developing inter-
pretable computational pathology tools for other diagnostic challenges.
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