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Abstract. Accurate clinical diagnosis requires comprehensive analysis
of medical imaging and patient narratives. However, current computer-
aided diagnosis methods focus primarily on imaging modalities while
neglecting the integration of patient-reported clinical narratives, due to
the scarcity of high-quality patient narratives and the limitations in
multimodal information fusion. To address these issues, we propose a
dual-component framework consisting of: 1) a Retrieval Augmented Pa-
tient Narratives Generation Module (RANGM) that employs a retrieval-
enhanced mechanism to guide pre-trained large language models in gen-
erating clinically plausible patient narratives; and 2) a Multimodal In-
formation Balanced Fusion Network (MIBF-Net) incorporating our novel
Information Balanced Fusion Attention (IBFA) module for effective cross-
modal integration, along with a Modal Prediction-Divergent Loss (MP-
Loss) to enhance the model’s ability to diagnose samples that have am-
biguous single modal prediction distribution. Owing to the plug-and-
play design, our MIBF-Net can integrate with existing imaging-based
state-of-the-art methods. Extensive experiments demonstrate significant
performance improvements of 2.3%-4.6% on the HAM10000 dataset and
3.8%-6.4% on the ISIC2019 dataset. Our code is publicly available at
https://anonymous.4open.science/r/MIBF-Net-2B52/.
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Fig. 1: (a)-(b) Some diseases, such as NV and MEL, exhibit highly similar vi-
sual appearances with overlapping feature distributions.(c) Our RANGM mod-
ule enhances LLM generation capabilities by retrieving relevant medical knowl-
edge through K-Nearest Neighbors (KNN) matching, enabling the generation
of highly realistic patient narratives.(d)-(e) The meticulously designed Informa-
tion Balanced Fusion Attention (IBFA) module achieves effective integration
across modalities. Through the Modal Prediction-Divergent Loss (MP-Loss), we
reinforce the model’s focus on analyzing challenging samples with ambiguous
modality information.(f) Our approach can serve as a plug-and-play solution
that can be seamlessly integrated with any existing model to enhance their un-
derstanding of patient narratives and improve diagnostic accuracy.

1 Introduction

The integration of linguistic modalities (such as patient narratives) with med-
ical imaging is essential for accurate disease diagnosis[24], as visual data alone
often inadequately captures complex medical conditions. For instance, early-
stage melanomas and nevi are challenging to differentiate visually [21,12,20] ,
as both exhibit irregular shapes and brownish-black pigmentation (Fig. 1(a)).
This difficulty is further compounded by the significant overlap in their t-SNE
distributions (Fig. 1(b)). Patient narratives, such as localized pain or lifestyle
factors, provide critical contextual information that enhances diagnostic preci-
sion. Thus, combining linguistic and visual modalities is vital for robust disease
diagnosis[3,6,18,29].

However, obtaining and using patient narratives is challenging [16][9]. Clin-
ically, there is a lack of high-quality patient narratives data with image-text
matching. Additionally, the use of existing text generation models is limited by
poor medical knowledge generation quality and low diversity [23,2,27], making
it challenging to simulate real clinical diagnostic scenarios. Meanwhile, there
is a lack of effective multi-modal fusion methods and training approaches that
focus on samples with predictive discrepancies [7,13,10]. Existing multi-modal
information fusion methods exhibit information weighting bias when attending
to multiple modalities, failing to balance attention between the two types of
information [14,26,30,8,28]. For samples with significant discrepancies in single-
modal predictions, there is no effective method to specifically supervise these
samples [1].
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To address these issues, we propose a novel probability recall augmented
generation method (Fig. 1(c)) capable of generating realistic patient narratives.
Additionally, we have designed an information balanced fusion attention-IBFA
(Fig. 1(d)) and, based on this attention, implemented a multimodal classifica-
tion method called MIBF-Net. We also devised a modal prediction-divergent
loss (MP-Loss) to assist the model in focusing on the learning of samples with
ambiguous single modal prediction distribution (i.e., lesion image modal and pa-
tient narratives modal are trend to predict different disease). In this paper, our
contributions are fourfold:

– We are the first to combine patient narratives with lesion images for computer-
aided diagnosis. Patient narratives provide information beyond the lesion
images, such as pain perception. Compared to using lesion images alone for
diagnosis, our method better meets clinical needs and aligns more closely
with the logic of clinical diagnosis.

– To generate high quality patient narratives, we propose the Retrieval Aug-
mented Patient Narratives Generation Module (RANGM), which can re-
trieve corresponding knowledge to enhance the professionalism and diversity
of the patient narratives generated by the LLM.

– To utilize patient narratives and lesion images efficiently, we propose the
Multi-modal Information Balanced Fusion Network (MIBF-Net). Thanks to
our Information Balanced Fusion Attention (IBFA), MIBF-Net can fuse in-
formation from the two modalities in a balanced manner, without being
dominated by single-modal judgments.

– To focus more on hard samples that have ambiguous single modal prediction
distribution, we propose a meticulously designed modal prediction-divergent
loss (MP-Loss) to supervise network training. This loss function guides the
model pay more attention on these samples using KL divergency score,
thereby improving classification performance for challenging samples.

2 Method

Retrieval Augmented Patient Narratives Generation Module (RANGM)
overcomes the limitations of existing large language models (LLM) in down-
stream professional knowledge, enabling more comprehensive and diverse gener-
ation. We have compiled a substantial knowledge base by gathering information
related to the diseases covered in our dataset. This knowledge base is then hashed
using a BERT encoder as the hash function. To retrieve relevant knowledge, we
employ the same BERT encoder for the disease names and their basic definitions
that we wish to query. Through KNN (k-nearest neighbors) hashing matching
with the knowledge base, we obtain the retrieval knowledge. To enhance diver-
sity, we randomly select the top M pieces of knowledge with the highest matching
scores as the final retrieval knowledge, which is then integrated into our meticu-
lously designed prompt. Assume that the patient narratives, query tokens, and
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If you are a late stage melanoma patient, 
but you don't know you have melanoma, 
and this is an image of your affected 
area, please generate a self description 
in the first person, combining its clinical 
symptoms and provided knowledge 
below. Just like when you consult a 
doctor at the hospital.

Prompt:

The diameter of the lesion 
has noticeably increased 
in size over the past few 
weeks. Additionally, there 
is occasional mild pain 
and ...·

Patient self-description

LLM

KNN

Random 
Sample

Melanoma often ...

Melanoma is a  ...

Patient with Mela... MEL

Melanoma often ...
Melanoma is a  ...
Patient with Mela...

inject

Knowledge:

Knowledge Database
embedding space

Fig. 2: The architecture of the proposed RANGM. It processes query disease em-
bedding by performing KNN matching with encoded vectors from the knowledge
base, randomly selecting M matches from the top K candidates to inject into the
prompt, thereby guiding the LLM to generate high-quality patient narratives.

knowledge tokens are y, q, H, the above process can be formulated as:

y = argmax
y

LLM
(
y | p,Rfinal = RandomSelect

(
argtopK

hi∈H

(
q · hi

∥q∥∥hi∥

)
,M

))
(1)

Multi-modal information balanced fusion network (MIBF-Net). The
pipeline of our MIBF-Net is shown in Fig. 3. The text modal and image modal
input will firstly passing through their respective encoders to obtain their own
features, Ft and Fi. These two features will first pass through two MLP clas-
sification networks to predict the Image only Prediction (IoP) and Text only
Prediction (ToP), which are used for subsequent loss computation. Then, the
two features are fed into the Information Balanced Fusion Attention (IBFA)
module. Our IBFA concatenates the K and V vectors of the image modal and
text modal, ensuring that during the attention query and weighting operations,
the model can equally attend to information from its own modality and the
queried modality. This achieves efficient feature fusion (i.e., balancing attention
to inter-modal discrepancies while maintaining focus on intra-modal features).
Meanwhile, thanks to the design of multi-head mechanism, our IBFA module is
capable of decomposing features from different modalities into higher h dimen-
sions, achieving a more granular level of fusion. We employed IBFA twice: once
using the image query as the search input and another time using the text query
as the search input, which can be formulated as:

Fi2t = IBFA(Qi,K,V) =

[
σ

(
QiW

(q)
j ·([Ki,Kt]W

(k)
j )⊤

√
dk

)
[Vi,Vt] ·W(v)

j

]
h

j=1
W0

(2)
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Fig. 3: The architecture of the proposed MIBF-Net: the input images and pa-
tient narratives are first encoded through encoders to obtain individual modality
predictions (Image only prediction (IoP) and Text only Prediction ToP), then
the encoded features are fused through IBFA for multimodal feature integration,
with MLP subsequently predicting multimodal results (MMP), while MP-Loss
loss optimizes network parameters by leveraging the distribution discrepancy
between IoP and ToP along with MMP prediction distribution bias.

Ft2i = IBFA(Qt,K,V) =

[
σ

(
QtW

(q)
j ·([Kt,Ki]W

(k)
j )⊤

√
dk

)
[Vt,Vi] ·W(v)

j

]
h

j=1
W0

(3)
where [·] means concatenate, i represents image modal, t represents text

modal and σ(z) = ezi∑n
j=1 ezj

is softmax function used to normalize the probability
distribution of attention scores, emphasizing important information. Then the
fused information [Fi2t,Ft2i] from the two modalities is concatenated and fed
into the final MLP classifier to get multi-modal predictions (MMP).

Modal prediction-divergent loss. We propose a loss function that leverages
the average Kullback-Leibler (KL) divergence [17] between the classification pre-
dictions of the image and text modalities to dynamically weight the supervision
of the final multimodal output. We denote the network parameters for predicting
these three outputs as θi, θt, and θi,t, respectively. As illustrated in Fig. 3, we em-
ploy two Multi-Layer Perceptrons (MLP) to generate the image-only prediction
(i.e., IoP=f(x; θi)) and the text-only prediction (i.e., ToP=f(x; θt)). Simultane-
ously, the IBFA module fuses the information from both modalities to produce
the multi-modal prediction (i.e., MMP=f(xi,xt; θi,t)). Based on this framework,
the modal prediction-divergent loss can be formulated as follows:
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LMP-Loss = E(xi,xt,y)∼D

α · ||y − f(xi; θi)||2
+ β · ||y − f(xt; θt)||2
+ γ · KL · ||y − f(xi,xt; θi,t)||2

 (4)

where, KL denotes the Kullback-Leibler divergence score calculated between the
IoP and the ToP:

KL =
1

2

(∑
x

f(x; θi) log
f(x; θi)

f(x; θt)
+
∑
x

f(x; θt) log
f(x; θt)

f(x; θi)

)
(5)

This approach enhances learning for challenging samples where there is a
significant information discrepancy between the image and text modalities.

3 Experiment

Datasets. We conduct experiment on ISIC2019 1 and HAM10000 [22]datasets
to prove the effectiveness of proposed method. The ISIC2019 dataset contains
25,531 dermatological images, while the HAM10000 dataset comprises 10,015
dermatological images. Both datasets cover seven skin disease categories, in-
cluding melanoma (MEL), nevus (NV), basal cell carcinoma (BCC), actinic ker-
atosis (AK), benign keratosis (BKL), dermatofibroma (DF), and vascular lesions
(VASC). Additionally, the ISIC2019 dataset includes an extra category of squa-
mous cell carcinoma (SCC). These datasets are characterized by significant class
imbalance and high visual similarity between different categories, making them
challenging benchmarks. For the experimental setup, we adopt a random split
strategy, using 80% as the training set and 20% as the test set. we use Top-1 ac-
curacy and F1-score to evaluate the model’s performance. All images are resized
to 224 pixles.

Implementation Details. We use BERT [4] as text encoder. For the image
encoder, our approach can incorporate existing image-only diagnostic methods
as our image encoder, enabling these state-of-the-art models to seamlessly un-
derstand patient narratives and perform clinical scenario-compliant diagnostic
tasks. We employ GPT-4 as our Large Language Model (LLM), and API access
can be obtained through an official subscription 2. Since both datasets include
records of the lesion locations, we have also integrated the lesion locations into
the outputs generated by the LLM. For the loss function, we set α = 0.6, β = 0.4,
γ = 0.1. We utilize the Adam optimizer with a learning rate of 5e-5 to train our
network with 50 epochs. Experiment is executed on four Nvidia RTX 3090 GPUs.

Comparative Experiments. Since our work is the first to utilize patient narra-
tives as an auxiliary modality for image-based disease classification, meanwhile,
1 https://challenge.isic-archive.com/landing/2019/
2 https://openai.com/api/
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Table 1: Comparison of Different Methods on Two Datasets with Improvements
Experiment on HAM10000 Dataset

Method Acc F1 MEL NV BCC AK BKL DF VASC SCC Improv.
Resnet50 [11] 0.8915 0.8911 0.6552 0.9763 0.8600 0.5714 0.7328 0.6875 0.8320 - +3.15%w/ ours 0.9230 0.9490 0.7034 0.9824 0.8979 0.7200 0.8384 0.8260 0.7812 -
DaViT [5] 0.8740 0.8720 0.6453 0.9664 0.7449 0.6533 0.6332 0.6957 0.9062 - +3.20%w/ ours 0.9060 0.9053 0.6667 0.9704 0.8600 0.6571 0.8190 0.7500 0.9500 -
HiFuse [15] 0.8540 0.8499 0.5407 0.9555 0.7449 0.6133 0.6245 0.6522 0.875 - +4.60%w/ ours 0.9000 0.8751 0.7703 0.9023 0.9259 0.9642 0.9432 0.9047 0.8928 -
MedMamba [25] 0.8940 0.8814 0.3448 0.9911 0.8800 0.8857 0.7856 0.7500 0.9500 - +3.00%w/ ours 0.9240 0.9198 0.7500 0.9788 0.8571 0.7066 0.8384 0.7826 0.9687 -
ConvNeXt [19] 0.9065 0.9059 0.5747 0.9719 0.9000 0.8286 0.8190 0.8750 0.9500 - +2.30%w/ ours 0.9295 0.8899 0.7707 0.9524 0.9021 0.857 0.9090 0.9523 0.9227 -

Experiment on ISIC2019 Dataset
Method Acc F1 MEL NV BCC AK BKL DF VASC SCC Improv.
Resnet50 [11] 0.8488 0.8488 0.7580 0.9188 0.9034 0.5783 0.7395 0.7111 0.9400 0.5752 +6.44%w/ ours 0.9132 0.9116 0.8527 0.9757 0.9083 0.7617 0.8355 0.7010 0.9162 0.71264
DaViT [5] 0.8934 0.8917 0.7947 0.9589 0.9271 0.7283 0.8069 0.6957 0.9355 0.7288 +3.40%w/ ours 0.9274 0.9263 0.8613 0.9761 0.9484 0.7774 0.8860 0.7783 0.9359 0.7339
HiFuse [15] 0.8741 0.8740 0.7859 0.9410 0.8480 0.7283 0.8340 0.7391 0.9335 0.6610 +4.17%w/ ours 0.9158 0.914 0.8585 0.9766 0.8821 0.7888 0.8584 0.7886 0.8620 0.7475
MedMamba [25] 0.8867 0.8847 0.7439 0.9581 0.9331 0.7717 0.8263 0.7826 0.9032 0.6441 +3.86%w/ ours 0.9253 0.9290 0.8571 0.9706 0.9208 0.8288 0.9061 0.8195 0.8916 0.7825
ConvNeXt [19] 0.9061 0.9045 0.8366 0.9697 0.9301 0.8043 0.7683 0.6522 0.9355 0.7627 +3.82%w/ ours 0.9443 0.9430 0.8807 0.9877 0.9568 0.8316 0.8865 0.8865 0.9458 0.8660

our method does not specify a particular image encoder, and thus, it can be
considered as a plug-and-play module applicable to any existing state-of-the-
art image classification method, such as Resnet50 [11], DaViT [5] , HiFuse [15],
MedMamba [25] and ConvNeXt [19]. The effectiveness of our proposed method
has been demonstrated through experiments on two datasets as shown in Tab. 1.
For the HAM10000 dataset, our method achieves a top accuracy of 0.9295. No-
tably, the HiFuse method demonstrates a 4.6% improvement after integrating our
module. On the ISIC2019 dataset, our approach attains a maximum accuracy of
0.9445, while ResNet50 shows a significant 6.44% enhancement when equipped
with our module. Furthermore, substantial improvements are observed in both
the F1-score and classification accuracy across individual disease categories.

Ablation study. The ablation experiments conducted on the ISIC dataset fur-
ther demonstrate the effectiveness of our proposed method. First, we show that
our RANGM module generates more diverse textual narratives. As illustrated
in Fig. 4(a), compared to the baseline without RANGM, the samples generated
with RANGM exhibit significant improvements across evaluation metrics includ-
ing Distinct-N, Vocabulary Usage, and Self-BLEU. We have also randomly se-
lected some samples, as shown in Fig. 5, and found that after applying RANGM,
the generated patient narratives align more closely with clinical scenarios, and
the relevant knowledge reflected is more accurate. Additionally, separate ablation
studies on individual modules validate their contributions. Using ResNet-50 as
the image encoder, the baseline achieves a Top-1 accuracy of 0.8488 without any
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(b) Comparison of Text Generation Methods
with and without our proposed module.

Fig. 4: Ablation experiment results. (a) After employing our RANGM, the met-
rics used to evaluate the diversity of model generation have shown significant
improvement. (b) The box plot indicates the accuracy rates of various categories
under different settings, with the line representing the change in accuracy across
all samples. As our designs are sequentially incorporated, the classification per-
formance continuously improves, which verifies the effectiveness of our method.

specialized design. After integrating the RANGM module (which supplements
patient narratives), the accuracy increases to 0.8696, demonstrating that incor-
porating non-visual information (e.g., pain symptoms, lifestyle habits) through
clinical narratives effectively enhances classification performance. Further re-
placing conventional cross-attention with our IBFA module for modality fusion
elevates accuracy to 0.9015, confirming that IBFA’s dual attention mechanism
(modeling both intra-modal and inter-modal relationships) enables more effec-
tive information aggregation. Finally, employing the MP-Loss loss to strengthen
supervision on ambiguous single-modality prediction distrubution samples let
accuracy reaches 0.9132. Meanwhile, as shown in Fig. 4(b), the box plot analysis
reveals improvements in both per-class accuracy and median accuracy, indicating
MP-Loss’s capability to better supervise challenging samples.

4 Conclusion

For the first time, we have integrated patient narratives with lesion images for
disease diagnosis. We have developed an efficient method for generating patient
narratives and designed a plug-and-play MIBF-Net and MP-Loss loss, which
can assist existing image-only methods in understanding patient narratives and
achieving diagnoses that align with clinical scenarios.
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I noticed a red mole,  it is pain sometime. it is on my hand.

I noticed a red area on my skin that appears brown and has irregular 
edges.  the surrounding skin  seems to have become thicker 
compared to earlier with a little pain sometimes. it is on my hand.

w/o RANGM:

w/   RANGM:
MEL

I noticed a pink bump on the skin surface with a somewhat rough 
texture. It looks like wax dripping on it and doesn't hurt or cause 
discomfort. It is is on my chest.

I have multiple pink, rough, slightly raised skin spots, painless. It is 
is on my chest.

w/o RANGM:

w/   RANGM:
BKL

I noticed there is a light red spot on my skin, and its edges seem 
slightly blurred and not very regular. It feels flat to the touch without 
noticeable elevation or a grainy texture, is on my head.

I have red, rough, slightly raised skin spots, painless, non-itchy, is 
on my head.w/o RANGM:

w/   RANGM:
SCC

Fig. 5: We randomly selected three samples to demonstrate the improvement in
effectiveness brought by using RANGM. After applying RANGM, the model’s
output becomes more realistic, includes more details, and better aligns with
clinical scenarios.

Science and Technology Program (JCYJ20240813151224032, JCYJ20240813151102004),
and Shenzhen Medical Research Fund (B2402030).
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