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Abstract. Patient mobility monitoring in intensive care is critical for
ensuring timely interventions and improving clinical outcomes. While
accelerometry-based sensor data are widely adopted in training artificial
intelligence models to estimate patient mobility, existing approaches face
two key limitations highlighted in clinical practice: (1) modeling the long-
term accelerometer data is challenging due to the high dimensionality,
variability, and noise, and (2) the absence of efficient and robust meth-
ods for long-term mobility assessment. To overcome these challenges, we
introduce MELON, a novel multimodal framework designed to predict
12-hour mobility status in the critical care setting. MELON leverages the
power of a dual-branch network architecture, combining the strengths of
spectrogram-based visual representations and sequential accelerometer
statistical features. MELON effectively captures global and fine-grained
mobility patterns by integrating a pre-trained image encoder for rich
frequency-domain feature extraction and a Mixture-of-Experts encoder
for sequence modeling. We trained and evaluated the MELON model
on the multimodal dataset of 126 patients recruited from nine Inten-
sive Care Units. Experiments showed that MELON outperforms conven-
tional approaches for 12-hour mobility status estimation with an overall
area under the receiver operating characteristic curve (AU-ROC) of 0.82
(95% confidence interval 0.78-0.86). Notably, our experiments also re-
vealed that accelerometer data collected from the wrist provides robust
predictive performance compared with data from the ankle, suggesting a
single-sensor solution that can reduce patient burden and lower deploy-
ment costs. Project repository: https://github.com/iheallab/MELON.

Keywords: Accelerometer · Multimodal · Spectrogram · Mobility · In-
tensive Care Unit · Mixture of Expert · Patient Monitoring.
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1 Introduction

Patients in the Intensive Care Unit (ICU) often experience prolonged immo-
bility, increasing the risk of developing ICU-acquired weakness (ICU-AW) and
cognitive impairment, such as delirium [3]. Frequent patient mobility assess-
ments are pivotal for facilitating timely interventions and mitigating adverse
outcomes [13,2,19]. Several functional mobility tools have been developed and
implemented in clinical practice, such as the ICU Mobility Scale [5] and the Johns
Hopkins Highest Level of Mobility Scale [6]. However, these tools require manual
administration by ICU staff, which can be time-consuming and prone to doc-
umentation errors. Additionally, manual assessments often lack the granularity
needed to capture subtle changes in mobility over time. Autonomous sensor-
based approaches offer a promising alternative, enabling continuous, objective,
and high-resolution patient mobility monitoring while reducing the workload on
healthcare providers.

Accelerometry-based sensors are a commonly used option for capturing phys-
ical activity levels, posture changes, and mobility trends over time in a non-
invasive manner [12,21]. However, directly modeling raw time-series accelerome-
ter data presents several challenges due to the inherent complexity of the signals.
The data consists of long sequences, making it computationally demanding to
process and analyze. Additionally, its non-stationary nature, where statistical
properties change over time, complicates pattern recognition and model gener-
alization. Traditional approaches that rely on statistical features extracted from
raw accelerometry data often fail to capture the nuances of mobility fully. To
address this, recent studies have explored converting sequential sensor data into
image representations, leveraging the hierarchical feature extraction capabilities
of pre-trained vision models [23,22,1]. For instance, recurrence plots—a method
transforming temporal dynamics into 2D texture patterns—have been success-
fully adopted in works such as [9] and [8], achieving state-of-the-art performance
in activity recognition tasks. Alternatively, frequency-domain representations
like spectrograms generated via Short-Time Fourier Transform (STFT) have
also proven effective. Studies by [7] and [11] demonstrate that CNN-based mod-
els trained on spectrograms can robustly identify complex activities through
learned spectral-temporal patterns. However, most of these models are devel-
oped and validated in general domains, and they do not address the specific
needs of the ICU setups, which exhibit different activity patterns [14] and long-
term assessment.

In this study, we propose MELON (Multimodal mixture-of-Experts with
spectral-temporal fusion for Long-term mObility estimatioN), a novel dual-branch
multimodal architecture for patient mobility assessment, Fig 1. The proposed ar-
chitecture integrates two complementary input modalities: statistical accelerom-
eter features sequence and spectrogram representation images of raw accelerome-
try data. To effectively process these modalities, we employ a pre-trained mixture-
of-experts (Time-MoE) to model statistical feature sequences and an image en-
coder to extract patterns from frequency domain representations. By combin-
ing these modalities, we leverage their complementarity, statistical features offer
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structured and fine-grained variations, whereas spectrograms enhance the ability
to detect global temporal dependency, resulting in a more comprehensive repre-
sentation of patient mobility. To the best of our knowledge, this is the first study
that combines the spectrogram of accelerometer data and sequences of statistical
features using a dual-branch multimodal architecture. Our main contributions
are:

(1) We propose MELON, a novel dual-branch multimodal framework designed
to model accelerometer data by processing spectrogram images and their
corresponding long-term statistical feature sequences using ResNet and a
Mixture-of-Experts structure, respectively, for accurate prediction of pa-
tients’ mobility status in the ICU.

(2) We performed extensive comparisons using data from 126 ICU patients to
highlight the robustness of the proposed method. Our experiments demon-
strated that the combination of spectral and temporal information of the
accelerometer data could boost the prediction power.

(3) We accessed multiple analyses to provide practical recommendations in eval-
uating patients’ mobility status.

2 Methods

In this study, we propose a multimodal dual-branch model, MELON, trained on
spectrogram images I and their corresponding sequences of statistical features
A extracted from raw accelerometer data to predict patients’ mobility measure-
ments over a 12-hour long-term window. For mobility, we had four classes, i.e.,
completely immobile, very limited, slightly limited, and no limitation, extracted
from the Braden scale [20]. Fig 1 illustrates the architecture of our proposed
pipeline.

2.1 Accelerometer Data Preprocessing

Given the three-axis raw accelerometer data at 20 Hz for the spectral informa-
tion, we first transformed the signal into a time-frequency representation using
a Short-Time Fourier Transform (STFT). We set the sampling frequency to 20
Hz, a segment length of 64 samples, and an overlap of 32 samples to achieve a
balanced resolution in both time and frequency domains. After computing the
spectrogram S, we apply a logarithmic transformation to compress the dynamic
range. The resulting logarithmic spectrogram is then normalized to the [0, 255]
range and converted to images I.

For the temporal information, first, we extracted five features following the
prior work [24] which has been proven to be efficient to represent the temporal
information: the mean and standard deviation of the vector magnitude, the mean
and standard deviation of the angle between the x-axis and the vector magnitude,
and the domain frequency. Then, we constructed 12-hour-long feature sequences
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Fig. 1: In the data preparation stage (a), we collected data from two accelerom-
eters positioned at the patient’s nondominant wrist and ankle. Data was then
deidentified and stored in a secure server. We generated spectrograms using the
Short-Time Fourier Transform and also extracted five features per minute with
a 30-second overlap over 12 hours. The MELON model has a dual-branch struc-
ture, as shown in (b). The embeddings from the two branches are then fed into a
self-attention layer to generate fusion embeddings. Then, the fused embeddings
are processed in the classifier for mobility status prediction.

by (1) calculating these five features for each minute within the 12-hour win-
dow, (2) padding missing values when the accelerometer sensor was temporarily
removed or the recording time was shorter than 12 hours, and (3) employing a
30-second overlap between adjacent segments. This process produced a feature
sequence with 1440 time steps—each corresponding to one minute of data (with
30-second overlaps)—for each of the five features A ∈ R1440×5.

2.2 Multimodal Dual-Branch Architecture

We provide the spectral feature images I and the temporal feature sequences
A to the MELON model, which consists of three main components: (1) image
encoder pre-trained on ImageNet dataset, (2) Time-MoE encoder pre-trained on
our accelerometer statistical sequence data, and (3) attention fusion block and
classifier.
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Image Encoder To encode spectrogram images, we adapt a ResNet model
pre-trained on ImageNet as the backbone image encoder. The original fully con-
nected layer is replaced with a tailored projection module. This module con-
sists of a linear layer that projects the high-dimensional feature vector into a
512-dimensional space, followed by a ReLU activation and dropout layer. The
embedding of spectrogram is donated as Iembed ∈ R1×D̂.

Time-MoE Encoder Following Shi et al. [16]’s work, we utilize an input
project fproj and point-wise tokenization to generate embeddings of the ac-
celerometer statistical sequences, ensuring the completeness of temporal infor-
mation. Then, a SwiGLU layer is used to process each element of sequences
[15]:

Ahidden = SwiGLU(A) = Swish(Wfproj(A))⊗ (V fproj(A)), (1)

where W ∈ RD×1 and V ∈ RD×1 are two learnable parameters, Swish is
an activation function introduced by Ramachandran et al. [10], and D = 128
is the hidden size. Next, the projected Ahidden is fed into a MoE transformer
block, which consists of a stack of transformer decoder layers augmented with a
sparse MoE feed-forward network. In each decoder layer, the self-attention mod-
ule computes attention scores using query, key, and value projections combined
with rotary embeddings to effectively capture both local and long-range tem-
poral dependencies [18]. Subsequently, the MoE feed-forward network employs
a dynamic gating mechanism that routes token representations to one of four
specialized temporal experts in addition to a shared expert. The MoE output
for a token h is computed as:

EMoE(h) =

4∑
i=1

αi · Ei(h) + αs · Es(h), (2)

where the routing weights are given by αi = softmax(Wgh) with Wg ∈
R4×D, and shared expert gating is computed as αs = σ(Wsh) with Ws ∈ R1×D.
Here, Ei(h) represents the output of the ith specialized expert, and Es(h) is
the output from the shared expert, with each expert applying an expansion
via an up-projection, a non-linear SiLU activation, and a subsequent down-
projection to restore the original dimensionality. Residual connections and RMS
normalization are applied before the self-attention and after the MoE sub-layers
to ensure stable gradient flow and robust feature integration. The final output
embedding denoted Aembed ∈ R1×D̂ is then obtained by aggregating the sequence
of token representations, where D̂ = 512 is the embedding size.

The encoder is pre-trained using autoregression on our statistical features
sequence (from the training set only to avoid data leakage). Given the sequential
input, it predicts the next five features by adding a regression head at the end
of the Time-MoE encoder. An early-stopping strategy has been set to avoid
overfitting.
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Table 1: Patient Characteristics (n=126) & Classes Distribution
Train Validation Test

Basic information
Number of patients, n 79 25 22
Age, mean (SD) 56.91 (14.92) 60.8 (17.55) 63.14 (11.66)
Female, n(%) 22 (28%) 7 (28%) 7(31%)
Length of stay (days),
median (25th, 75th percentile)

13.43
(6.33, 30.04)

12.44
(8.16, 29.68)

15.00
(7.92, 22.24)

Number of samples, n 417 133 117
Classes (%)

Completely immobile 3 (1%) 5 (4%) 2 (10%)
Very limited 138 (33%) 47 (35%) 59 (50%)
Slightly limited 236 (57%) 66 (50%) 53 (45%)
No limitation 48 (12%) 15 (11%) 3 (3%)

Abbreviations: n: number; SD: standard deviation

Fusion and Classification A self-attention mechanism is employed to effec-
tively combine information from both modalities. First, we reshape the sum
of the normalized accelerometer features and the normalized image features to
act as the query, key, and value for the multi-head attention. Then, attention
embedding was computed, and this yields an attention-enhanced feature vector
Fattn ∈ RB×D̂, which was then passed through multi-head classifier blocks. Each
classifier head comprises multiple fully connected layers with ReLU activations,
culminating in a sigmoid function to produce a probability score.

3 Experiments and Results

3.1 Experimental Setup

Dataset We collected our ICU dataset of 126 adult patients who agreed to
participate in this research study during admission to nine specialized ICUs
(Cardiology, Cardiac, Medical, Neuromedicine, Neuro-vascular, Thoracic & Lung
Transplant, Trauma, and Surgery) between 2019 and 2024. The study was ap-
proved by the University of Florida Institutional Review Board (IRB) under
IRB201900354 and IRB202101013. Accelerometer sensor data for each partici-
pant was collected for at most 7 days, or until they were transferred or discharged
from the ICU. Two types of devices were used in this study: 1) Shimmer ECG
(Shimmer Sensing, Dublin, Ireland) and 2) Actigraph GTX3+ devices (Acti-
Graph LLC, Pensacola, FL, USA). Participants were asked to wear the sensor
on their wrists and/or ankles during the data collection period. Our care provider
team recorded the times when the device was removed and reapplied (for exam-
ple, during surgery or bathing). Additionally, mobility status data were extracted
from the Electronic Health Records (EHR) and updated at each nursing shift,
approximately every 12 hours.
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We split the data into development and test sets by individual patient, with
a ratio of 8:2, ensuring that the class distribution was preserved across all sub-
sets. Then, we further partitioned the development set into a train and vali-
dation set for model selection and hyperparameter tuning with the same ratio.
We computed and analyzed the distribution of patient characteristics and class
distribution (Table 1).

Method Comparison We compared our model with multiple existing meth-
ods. We first benchmarked our proposed method against conventional approaches.
Following the baseline setup from [4], we used the average activity counts along
each axis (x, y, and z) during 12-hour windows as features to predict mobil-
ity using machine learning (ML) models. Additionally, we implemented GRU
(Gated Recurrent Unit), the Transformer model, and Time-MoE 200M on the
accelerometer sequences to provide further performance comparisons. Next, we
performed an ablation study to evaluate the performance using only the spec-
trogram images and the performance when using only the sequential features.
We also tested the performance using the accelerometer data gathered from the
ankle. Our performances were evaluated by the area under the receiver operating
characteristic curve (AUROC).

Implementation details We first pre-trained our Time-MoE encoder in an
autoregressive manner on accelerometer statistical feature sequences. This ap-
proach leverages the temporal dependencies in the data, accelerating conver-
gence and enhancing overall performance. For the image encoder, we used the
pre-trained weights of ResNet.

All experiments, including pre-training, were conducted on an NVIDIA A100-
SXM4-80GB GPU, with a batch size of 16 to fully utilize the available GPU
memory. To prevent overfitting, we employed an early-stopping strategy with a
patience of 7 epochs. The best model was selected based on the highest AUROC
achieved on the validation set.

3.2 Results

We evaluated both conventional approaches, i.e., the baseline ML model (Lo-
gistic Regression), GRU, and the transformer (Table 2). Our proposed model
MELON outperformed others in predicting "Completely Immobile", "Very Lim-
ited", "Slightly Limited", and "No Limitation" with AUROC (95% C.I.) of 0.83
(0.68-0.94), 0.81 (0.75-0.89), 0.80 (0.74-0.87), and 0.84 (0.67-0.96), respectively.
"Very Limited" and "Slightly Limited" were the two dominant classes, resulting
in stable performance across all experimental setups. In contrast, "Completely
Immobile" and "No Limitation" were rare and imbalanced categories. Notably,
our proposed model demonstrated robust performance in predicting these less-
represented classes.

In our ablation study, we evaluated the model’s performance by separately
removing either the accelerometer sequence features or the spectrogram features.
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Table 2: Mobility Classification Performance Comparison
AUROC (95% CI)

Method Completely
Immobile

Very
Limited

Slightly
Limited

No
Limitation Overall

ML w/ activ.
counts

0.65
(0.38-0.81)

0.68
(0.62-0.74)

0.61
(0.56-0.68)

0.50
(0.41-0.68)

0.61
(0.52,0.68)

GRU w/
accel seq.

0.70
(0.63-0.79)

0.75
(0.67-0.83)

0.76
(0.69-0.83)

0.35
(0.06-0.85)

0.65
(0.54,0.76)

Transformer
w/ accel seq.

0.52
(0.42-0.62)

0.73
(0.64-0.82)

0.76
(0.69-0.84)

0.28
(0.18-0.44)

0.54
(0.45,0.64)

Time-MoE
w/ accel seq.

0.64
(0.47-0.80)

0.71
(0.60-0.81)

0.73
(0.63-0.81)

0.81
(0.62-0.96)

0.72
(0.65,0.80)

MELON w/o
Spec.

0.80
(0.67-0.91)

0.76
(0.66-0.85)

0.78
(0.69-0.85)

0.81
(0.64-0.94)

0.78
(0.72,0.83)

MELON w/o
accel seq.

0.23
(0.04-0.45)

0.77
(0.69-0.84)

0.74
(0.67-0.83)

0.81
(0.69-0.91)

0.63
(0.56,0.71)

MELON 0.83
(0.68-0.94)*

0.81
(0.75-0.89)*

0.80
(0.74-0.87)*

0.84
(0.67-0.96)*

0.82
(0.75,0.88)*

Abbreviations: ML: machine learning; CI: Confidence interval; accel: Accelerometer;
seq.: sequence; Spec.: spectrogram; *: p-value < 0.001 compared to baseline. P-values

are based on pairwise Wilcoxon rank sum tests.

Our results showed a significant drop in performance when either modality was
excluded. This further confirms that combining the global and fine-grained in-
formation enhances the model’s ability.

Additionally, we compared models trained on accelerometer data collected
from the patient’s wrist and ankle. The results indicated that wrist-mounted
data exhibited strong predictive power, effectively capturing mobility patterns.
In contrast, ankle-mounted data failed to differentiate mobility differences.

4 Discussion and Conclusion

Our study demonstrates that MELON, a novel multimodal dual-branch frame-
work combining frequency domain spectrogram features with accelerometer sta-
tistical sequences, can effectively predict long-term mobility levels in ICU pa-
tients using wrist sensor data alone. Spectrograms represent the frequency-based
features that emphasize periodicities, rhythms, and oscillations in the signal that
are not immediately observable in the raw time domain. In contrast, statistical
feature sequences capture structured and fine-grained variations over time, focus-
ing on temporal variations such as signal amplitude changes, localized anomalies,
bursts, and overall variability. This fusion of temporal and spectral pattern recog-
nition holds promise for objective, continuous mobility monitoring in critical care
settings.

In clinical practice, continuous monitoring of patient mobility is essential
for guiding timely rehabilitation. Our work suggests that wearable wrist sen-
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sors alone can provide reliable predictive power of long-term mobility. A single-
sensor solution minimizes patient discomfort, simplifies sensor management, and
reduces deployment costs, thereby facilitating widespread adoption in busy crit-
ical care environments.

However, the findings are constrained by the limited cohort (n=126) and
class imbalance affecting rare activity detection. Additionally, while our model
achieved high performance in controlled evaluations, its performance in broader,
more heterogeneous ICU scenarios remains to be validated. Future work will
focus on expanding our dataset through pre-training on larger public human
activity recognition datasets and integrating additional modalities, especially
depth imaging [17], to enhance robustness, prioritizing computational efficiency
for real-world ICU deployment.

In conclusion, MELON offers a promising approach for the continuous and
objective assessment of patient mobility in the ICU. By addressing current lim-
itations and incorporating further clinical data and modalities, our framework
could significantly contribute to personalized patient management and improved
clinical outcomes in critical care.

Data availability The data used in this project is available upon request. For
details and access instructions, please refer to our project repository.
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References

1. Azizi, S., Mustafa, B., Ryan, F., Beaver, Z., Freyberg, J., Deaton, J., Loh, A.,
Karthikesalingam, A., Kornblith, S., Chen, T., et al.: Big self-supervised models
advance medical image classification. In: Proceedings of the IEEE/CVF interna-
tional conference on computer vision. pp. 3478–3488 (2021)

2. Barr, J., Fraser, G.L., Puntillo, K., Ely, E.W., Gélinas, C., Dasta, J.F., Davidson,
J.E., Devlin, J.W., Kress, J.P., Joffe, A.M., et al.: Clinical practice guidelines for
the management of pain, agitation, and delirium in adult patients in the intensive
care unit. Critical care medicine 41(1), 263–306 (2013)

3. Chambers, M.A., Moylan, J.S., Reid, M.B.: Physical inactivity and muscle weak-
ness in the critically ill. Critical care medicine 37(10), S337–S346 (2009)

4. Davoudi, A., Malhotra, K.R., Shickel, B., Siegel, S., Williams, S., Ruppert, M.,
Bihorac, E., Ozrazgat-Baslanti, T., Tighe, P.J., Bihorac, A., et al.: Intelligent icu
for autonomous patient monitoring using pervasive sensing and deep learning. Sci-
entific reports 9(1), 8020 (2019)

5. Hodgson, C., Needham, D., Haines, K., Bailey, M., Ward, A., Harrold, M., Young,
P., Zanni, J., Buhr, H., Higgins, A., et al.: Feasibility and inter-rater reliability of
the icu mobility scale. Heart & Lung 43(1), 19–24 (2014)

6. Hoyer, E.H., Young, D.L., Klein, L.M., Kreif, J., Shumock, K., Hiser, S., Friedman,
M., Lavezza, A., Jette, A., Chan, K.S., et al.: Toward a common language for
measuring patient mobility in the hospital: reliability and construct validity of
interprofessional mobility measures. Physical therapy 98(2), 133–142 (2018)

https://github.com/iheallab/MELON


10 J. Zhang et al.

7. Ito, C., Cao, X., Shuzo, M., Maeda, E.: Application of CNN for human activity
recognition with fft spectrogram of acceleration and gyro sensors. In: Proceedings
of the 2018 ACM international joint conference and 2018 international symposium
on pervasive and ubiquitous computing and wearable computers. pp. 1503–1510
(2018)

8. Lew, C.H., Lim, K.M., Lee, C.P., Lim, J.Y.: Human activity classification using
recurrence plot and residual network. In: 2023 IEEE 11th Conference on Systems,
Process & Control (ICSPC). pp. 78–83. IEEE (2023)

9. Lu, J., Tong, K.Y.: Robust single accelerometer-based activity recognition using
modified recurrence plot. IEEE Sensors Journal 19(15), 6317–6324 (2019)

10. Ramachandran, P., Zoph, B., Le, Q.V.: Searching for activation functions. arXiv
preprint arXiv:1710.05941 (2017)

11. Sassi, M., Haleem, M.S., Pecchia, L.: Spectrogram-based approach with convolu-
tional neural network for human activity classification. In: Mediterranean Confer-
ence on Medical and Biological Engineering and Computing. pp. 387–401. Springer
(2023)

12. Schwab, K.E., To, A.Q., Chang, J., Ronish, B., Needham, D.M., Martin, J.L.,
Kamdar, B.B.: Actigraphy to measure physical activity in the intensive care unit:
a systematic review. Journal of intensive care medicine 35(11), 1323–1331 (2020)

13. Schweickert, W.D., Hall, J.: Icu-acquired weakness. Chest 131(5), 1541–1549
(2007)

14. Sena, J., Mostafiz, M.T., Zhang, J., Davidson, A.E., Bandyopadhyay, S., Nerella,
S., Ren, Y., Ozrazgat-Baslanti, T., Shickel, B., Loftus, T., et al.: Wearable sensors
in patient acuity assessment in critical care. Frontiers in Neurology 15, 1386728
(2024)

15. Shazeer, N.: Glu variants improve transformer. arXiv preprint arXiv:2002.05202
(2020)

16. Shi, X., Wang, S., Nie, Y., Li, D., Ye, Z., Wen, Q., Jin, M.: Time-moe: Billion-
scale time series foundation models with mixture of experts. arXiv preprint
arXiv:2409.16040 (2024)

17. Siegel, S., Zhang, J., Bandyopadhyay, S., Nerella, S., Silva, B., Baslanti, T., Biho-
rac, A., Rashidi, P.: Leveraging computer vision in the intensive care unit (icu) for
examining visitation and mobility. arXiv preprint arXiv:2403.06322 (2024)

18. Su, J., Ahmed, M., Lu, Y., Pan, S., Bo, W., Liu, Y.: Roformer: Enhanced trans-
former with rotary position embedding. Neurocomputing 568, 127063 (2024)

19. Tipping, C.J., Harrold, M., Holland, A., Romero, L., Nisbet, T., Hodgson, C.L.:
The effects of active mobilisation and rehabilitation in icu on mortality and func-
tion: a systematic review. Intensive care medicine 43, 171–183 (2017)

20. Valiani, V., Chen, Z., Lipori, G., Pahor, M., Sabbá, C., Manini, T.M.: Prognostic
value of braden activity subscale for mobility status in hospitalized older adults.
Journal of hospital medicine 12(6), 396–401 (2017)

21. Yang, C.C., Hsu, Y.L.: A review of accelerometry-based wearable motion detectors
for physical activity monitoring. Sensors 10(8), 7772–7788 (2010)

22. Yu, B., Gong, K.: Adaptive whole-body pet image denoising using 3D diffusion
models with controlnet. arXiv preprint arXiv:2411.05302 (2024)

23. Yu, B., Ozdemir, S., Dong, Y., Shao, W., Pan, T., Shi, K., Gong, K.: Robust
whole-body pet image denoising using 3D diffusion models: evaluation across var-
ious scanners, tracers, and dose levels. European Journal of Nuclear Medicine and
Molecular Imaging pp. 1–14 (2025)



MELON: Multimodal Mixture-of-Experts with Spectral-Temporal Fusion 11

24. Zhang, J., Contreras, M., Bandyopadhyay, S., Davidson, A., Sena, J., Ren,
Y., Guan, Z., Ozrazgat-Baslanti, T., Loftus, T.J., Nerella, S., et al.: Mango:
Multimodal acuity transformer for intelligent icu outcomes. arXiv preprint
arXiv:2412.17832 (2024)


	MELON: Multimodal Mixture-of-Experts with Spectral-Temporal Fusion for Long-Term MObility EstimatioN in Critical Care

