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Abstract. Early detection, accurate segmentation, classification and
tracking of polyps during colonoscopy are critical for preventing col-
orectal cancer. Many existing deep-learning-based methods for analyzing
colonoscopic videos either require task-specific fine-tuning, lack tracking
capabilities, or rely on domain-specific pre-training. In this paper, we in-
troduce PolypSegTrack, a novel foundation model that jointly addresses
polyp detection, segmentation, classification and unsupervised tracking
in colonoscopic videos. Our approach leverages a novel conditional mask
loss, enabling flexible training across datasets with either pixel-level seg-
mentation masks or bounding box annotations, allowing us to bypass
task-specific fine-tuning. Our unsupervised tracking module reliably as-
sociates polyp instances across frames using object queries, without re-
lying on any heuristics. We leverage a robust vision foundation model
backbone that is pre-trained unsupervisedly on natural images, thereby
removing the need for domain-specific pre-training. Extensive experi-
ments on multiple polyp benchmarks demonstrate that our method sig-
nificantly outperforms existing state-of-the-art approaches in detection,
segmentation, classification, and tracking.
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1 Introduction

Early diagnosis of polyps in the gastrointestinal (GI) tract through colonoscopy
is vital for preventing colorectal cancer. Automating the detection, segmentation,
classification, and tracking of polyps in colonoscopic videos can greatly enhance
the speed, accuracy, and consistency of polyp diagnosis. In recent years, deep
learning methods [42,10,36,11] has achieved remarkable progress in medical
image analysis tasks such as segmentation and object detection. In particular,
foundation models [34, 32]—pre-trained on large-scale, diverse datasets and then
fine-tuned for specific tasks—have emerged as a promising direction for robust vi-
sual representation learning. Recent studies [28] have shown that self-supervised
learning in these models can yield general-purpose features that transfer well
to downstream tasks. Several works [12, 40| have focused on developing founda-
tion models for colonoscopic video analysis, specifically for polyp detection and
segmentation.
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The aforementioned methods suffer from some drawbacks. The foundation
models need to be fine-tuned separately on the different downstream tasks like
detection and segmentation. However, treating these tasks independently ne-
glects the inherent synergies between these tasks and limits the amount of data
available for fine-tuning. Some recent works in computer vision [21,41] have in-
corporated these synergies, but such synergies for colonoscopic video analysis is
still lacking. Furthermore, the lack of large-scale video datasets with temporally
dense segmentations has limited the development of effective tracking models
for polyps, even though polyp tracking can be valuable for clinicians to generate
exam /operation reports with accurate numbers and consistent labels of polyps.
Additionally, the pre-training phase of the colonoscopic foundation models [40,
12] relies on domain-specific data, i.e., colonoscopic videos, which can be expen-
sive to collect.

In this paper, we propose PolypSegTrack, a novel foundation model for
polyp detection, segmentation, and unsupervised tracking in colonoscopic videos.
Our multi-task learning framework prevents over-optimization on single tasks
and improves generalization by exploiting different task commonalities, which
is key to develop a robust foundation model. Our novel conditional mask loss
allows us to exploit the interdependencies between detection and segmentation
tasks, and train our model in a flexible manner adapting to different annotation
types. We develop an unsupervised and non-heuristic tracking approach that
uses object queries to assign track identities to polyps. Our model is initially
pre-trained on natural images in an unsupervised manner, which reduces the
reliance on large-scale, expensive domain-specific colonoscopic data.

We evaluate our model on a wide range of tasks: joint detection and seg-
mentation on the ETIS, CVC-ColonDB, CVC-300, Kvasir-SEG and the CVC-
Clinic-DB datasets; detection and classification on the KUMC dataset; and joint
detection and tracking on a subset of the REAL-Colon dataset. In all the afore-
mentioned tasks, our model achieves the state-of-the-art results.

2 Method

Fig. 1 shows the overview of our approach. Given a video consisting of T frames,
the goal is to generate bounding boxes, segmentation masks, class probabilities,
and track identities for every polyp in each video frame. Our model generates
predictions in 2 stages: In stage 1, it produces bounding boxes, segmentation
masks, and class probabilities of objects in each frame; and in stage 2, the objects
are matched between every two consecutive frames to perform tracking.

Sec. 2.1 describes stage 1 of our approach, i.e., joint detection, segmentation
and classification in each frame. In Sec. 2.2, we describe our novel conditional
mask loss used to fine-tune our model jointly on training data containing segmen-
tation masks, as well as on training data where only bounding box annotations
are available. In Sec. 2.3, we describe stage 2 of our two-stage process, i.e., our
non-heuristic and unsupervised tracking method during inference.
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Fig. 1. Overview of the proposed approach. Our proposed conditional mask loss
(Sec. 2.2) allows flexible training. Our unsupervised and non-heuristic tracking on ob-
ject queries (Sec. 2.3) allows effective association of polyps across video frames.

2.1 Joint Detection, Segmentation, and Classification

To perform joint detection, segmentation and classification (stage 1 of our 2
stage process), our model consists of the following main components: a) a vision
foundation model backbone to extract meaningful image features from every
video frame, b) a transformer encoder and decoder to produce abstract object
proposals or object queries, and ¢) prediction heads to produce the bounding
boxes, segmentation masks and class probabilities using the object queries for
each object.

Vision foundation model backbone. Given a video frame z; € R”*W  the
vision foundation model backbone extracts meaningful multi-scale image features
from the frame (as shown in Fig. 1). Here H and W refer to the height and
width of the video frame. We use a pre-trained DINOv2 [28] backbone for the
feature extraction, followed by four multi-layer perceptrons (MLPs) to generate
features at multiple scales (1/32%%, 1/16'%, 1/8"h and 1/4*1). DINOv2 [28] is
pre-trained on natural images using self-supervised learning and has shown to
generate general-purpose features that transfer well to downstream tasks. Note
that the lack of supervision during pre-training is important to capture visual
features which translates well to other domains, like colonoscopic videos.
Transformer encoder-decoder. The transformer encoder-decoder accepts a
set of trainable initial embeddings e € R¥* and the flattened image features
as inputs to produce N object queries ¢; € RV*C for video frame z; (as shown
in Fig. 1). The object queries are abstract representations for all objects in the
current frame. N refers to the maximum number of objects to be discovered in
the current frame and C refers to the number of channels. We use MaskDINO
(DETR with Improved Denoising Anchor Boxes) [21] as our choice of encoder-
decoder. MaskDINO is trained on natural-image datasets where both segmenta-
tion masks and bounding boxes are available, so the encoder-decoder captures
the synnergies between the detection and segmentation tasks. However, note
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that MaskDINO is not extensively trained on data where segmentation masks
are lacking, which is a common case for our setting, i.e., for colonoscopic videos.
Prediction Heads. There are three prediction heads: box head, classification
head, and mask head, which are 3 layered, 1 layered and 3 layered fully connected
networks respectively (omitted in Fig. 1 for clarity). The box head and the
classification head accept the object queries and produce the bounding boxes and
the class probabilities of the corresponding objects. The mask head accepts the
object queries and generates intermediate queries, which are vectors that are the
same size as the object queries. These intermediate queries are then multiplied
with the image features and thresholded to produce the segmentation masks for
individual objects. This design is following [11]. Note that the object queries
are expressive and contain enough information about the respective objects that
they represent such that when they are passed through the respective heads,
they are able to produce the desired bounding boxes, class probabilities, and
segmentation masks for the objects they represent.

2.2 Training with Conditional Mask Loss

During training, our model can be conditioned to learn from either segmenta-
tion mask and bounding box annotations, or only from bounding box annota-
tions if the segmentation masks aren’t available in the dataset. This flexibility
allows us to train jointly from a wide range of datasets containing either types
of annotations. Datasets with segmentation-based annotations offer fine-grained
pixel-level localization for the model, but large-scale segmentation datasets are
lacking for colonoscopic videos. Datasets with bounding box-based annotations,
on the other hand, are available more commonly, even though, they offer only
course-grained localization in the form of 4 points. To leverage learning from
both kinds of datasets, we design a conditional mask loss which is activated only
when segmentation annotations are available.

Specifically, the conditional mask loss Lcond-mask 18 the combination of dice
loss Lgjce and mask-based cross entropy loss Lyasx whenever segmentation an-
notations are present. This loss is 0 when only bounding box annotations are
present. Formally, let sét refer to the segmentation annotations for a given ground
truth object i. If the segmentation annotations aren’t present, sét = (. Let K
represent the number of ground truth objects in the current image. Following
DETR [8], we first match the ground truth objects with the predicted object
queries (some object queries remain unmatched, since N > K). Let o; repre-
sent a match between an object query with the ground truth object i. Then the
conditional mask loss Lcond-mask for the given image is defined as follows.

K
Econd—mask = Z H{séﬁé@} [Lmask(gi) + Ldice(gi)] (1)

i=1

Our overall training objective is to minimize the a total multi-task loss func-
tion L.
L = acLes + apLobox + 0mLeond-mask (2)
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Here, L) refers to the cross entropy loss for class prediction and Lypex is a
combination of L1 loss and the generalized IoU loss calculated for the matched
predicted objects in the current image and the ground truth following DETR |[§].
e, ap and ay, are scaling factors to balance the loss terms. They are set to 1,
1 and 10 in all our experiments. The conditional mask loss is scaled 10x higher
than the bounding box loss to address the training data imbalance, where data
points with only bounding boxes are 3.5x more numerous than those with both
bounding boxes and segmentation masks.

2.3 Unsupervised Tracking in the Space of Object Queries

In stage 2 of our two-stage approach, we temporally associate object instances
between frames for tracking during inference (shown in Fig. 1). In prior works
on tracking [6], this step often involves heuristics like computing mask overlap,
which may not generalize well in case of large camera motion or occlusions, both
of which are common for colonoscopic videos. Heuristic IoU-based tracking cal-
culates overlap between segmentation masks or bounding boxes of objects across
frames in the pixel space. Polyps with high overlap in consecutive frames share
the same identity. To avoid heuristic post-processing, we match the object queries
in the query space, following MinVIS [17], which shows that object queries from
image-based models are consistent across frames, enabling lightweight tracking
without any temporal training. Specifically, given two consecutive video frames
x¢—1 and x;, we obtain the set of object queries ¢;:—; and ¢, as described in
Sec. 2.1. We perform tracking by using the Hungarian matching algorithm on a
cost matrix M € RN*N | where every element is M*J = Scosine(qi_1,q} ). Here,

Scosine(qh_1, q{ ) represents the cosine similarity between the i" element in q;_;
and j* element in ¢,. Since the appearance of objects change gradually in a
video, the object queries representing the same object only change slightly in
consecutive frames, leading to a high similarity between these queries.

This approach of per-frame matching in the query-space is less affected by oc-
clusions, as compared to directly matching masks or bounding boxes in the pixel
space, because the object queries are not directly tied to the spacial positions
of objects in each frame. Further, we do not need heuristics to handle the birth
and death of object instances in this framework. Since the number of queries
(N) is set to a high limit, it is larger than the actual number of instances (K).
So, there are queries that produce empty objects (represented by @ in Fig. 1).
The death of an object instance happens when its query is matched to such an
empty query for more than five frames. If an object query is matched to an empty
query for less than five frames, the query is carried forward and concatenated
to the next frame’s object queries. The birth of an instance is correctly handled
if the matched query embeddings have been null before the actual birth of the
object instance. Since the matching process does not need training, tracking can
be performed in an unsupervised manner. The unsupervised tracking is particu-
larly useful because of the lack of availability of densely annotated open-source
colonoscopic videos with polyps.
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Table 1. Joint detection and segmentation performance on seen datasets.

Kvasir-SEG CVC-ClinicDB
Type | Method Venue | Dice IoU Pre. Rec. | Dice IoU Pre. Rec.
PraNet [15] MICCATI’20 | 89.1 82.9 - - 89.4 835 - -
UACANet [20] ACM MM’21 | 91.4 86.1 - - 93.6 88.9 - -
Det SSFormer-L [39] MICCATI’22 | 92.2 87.1 - - 90.7 85.6 - -
Polyp-PVT [14] CAAT23 | 92.2 86.9 - - 93.4 88.4 - -
PVT-CAS [33] WACV’23 | 92.2 87.2 - - 93.6 88.9 - -
Def. DETR [42] ICLR’21 - - 90.2 76.0 - - 95.5 94.1
Se DAB-DETR [24] CVPR’22 - - 90.7 80.2 - - 94.0 92.6
g DINO [9] ICLR’23 - - 90.2 76.0 - - 95.5  92.7
Joint QueryNet [10] MICCATI’24 | 93.3 88.3 91.7 82.6 | 942 894 970 97.0
Ours 94.7 91.0 98.0 97.0|95.6 91.8 98.4 98.9

Table 2. Joint detection and segmentation performance on unseen datasets.

Type | Method ETIS CVC-ColonDB CVC-300
Dice IoU Pre. Re. |Dice IoU Pre. Re. |Dice IoU Pre. Re.
PraNet [15] 66.5 58.1 - - 74.7 66.1 - - 87.5 79.7 - -
UACANet [20] 77.0 69.0 - - 75.9 68.7 - - 91.3 85.1 - -
Det |SSFormer-L [39] | 80.1 72.8 - - 81.3 73.5 - - 90.3 83.8 - -
Polyp-PVT [14] | 78.1 69.7 - - 81.3 72.9 - - 89.8 82.8 - -
PVT-CAS [33] 78.6 70.8 - - 81.6 73.5 - - 89.2 82.3 - -
Def. DETR [42] - - 72.6 70.2 - - 79.9 82.6 - - 90.5 91.8
Se DAB-DETR [24] | - - 73.6 71.2 - - 77.5 78.2 - - 88.5 90.0
¢ |DINO 19] - - 71.3 68.3 - - 77.5 78.2 - - 91.7 91.7
Joint QueryNet [10] 81.9 74.0 749 774|828 759 835 85.3|92.0 8.0 91.8 93.3
Ours 91.4 85.3 94.2 93.8(|83.3 76.3 88.8 91.7|93.2 87.8 98.6 97.4

3 Experiments

3.1 Evaluation Datasets and Metrics

Datasets. We evaluate the detection and segmentation performance of our
model on five popular polyp datasets as benchmarks: CVC-ClinicDB [2], Kvasir-
SEG [18], CVC-ColonDB [38], ETIS [3] and CVC-300 [37]. We follow the same
setting as PraNet [15], that is, only 900 images from the Kvasir-SEG dataset
and 550 images from the CVC-ClinicDB dataset are used for training, and the
remaining images are used to test the learning ability of our method. The other
3 datasets are completely unseen during training and are used to test the gen-
eralizability of our method. We also evaluate the detection and classification
performance of polyps on the KUMC [22] validation dataset. To evaluate the un-
supervised tracking consistency of our method, we use 1000 consecutive frames
from three videos from the REAL-Colon dataset [5] without any fine-tuning.
Note that there are currently no openly available datasets, to the best of our
knowledge, to evaluate joint detection, segmentation, classification and tracking
together, hence we evaluate on the aforementioned tasks to cover all the tasks.
Metrics. For joint detection and segmentation, we use the precision and recall
metrics to evaluate the detection performance and the dice and IoU scores to
measure the segmentation accuracy to be consistent with prior works [10,15].
For detection and classification on KUMC [22] dataset, we report the F1 score
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Table 3. Results on the Table 4. Tracking results on a subset of the

KUMC [22] dataset. REAL-colon [5] dataset.
Method \ F1 Score Method ‘ DetA AssA HOTA MOTA IDF1
YOLOv4 [7] 57.2 IoU 57.7 28.2 39.5 33.6 37.0
FasterRCNN [35] | 57.7 Ours 57.7 49.9 53.2 34.3 52.7
RetinaNet [23] 59.0
SSD [25] 66.5 . .
TimeSformer [4] | 75.8 Table 5. Ab%atlon on the ETIS dataset with
CORP [16] 78.2 Resnet-50, Swin-Large and DINOv2 backbones.
FAME [13] 76.9
ProViCo [30] 78.6 -
VCL [31] 78.1 ‘ Dice IoU Pre. Re.
ST-Adapter [29] | 74.9 Ours (R50) 82.5 764 839 87.5
Endo-FM [40] | 841 Ours (SwinL) | 89.9 83.3 888 917
Ours 90.9 £ 0.5 Ours (DINOv2) | 91.4 85.3 94.2 93.8

following prior work [40]. To evaluate tacking, we report the object tracking
metrics of DetA (detection accuracy) [26], AssA (association accuracy) [26],
HOTA [26], MOTA (multi-object tracking accuracy) and IDF1 following prior
works on multi-object tracking [27].

3.2 Quantitative Results

Performance on joint detection and segmentation. Tab. 1 shows the per-
formance of recent models on the held-out validation images of the Kvasir-SEG
and the CVC-ClonicDB datasets. Tab. 2 shows the performance of these models
on the unseen CVC-ColonDB, ETIS and CVC-300 datasets. We observe that
our model outperforms other methods for all the datasets, sometimes by a large
margin (as seen for the ETIS dataset).

Performance on polyp detection and classification. We evaluate different
methods on the KUMC dataset in Tab. 3. Our method outperforms the next
best method, EndoFM [40], which is a also foundation model, significantly.
Tracking performance. To the best of our knowledge, we haven’t seen any
methods performing tracking on polyps. To analyze the tracking performance
of our method, we use a subset of the REAL-Colon dataset. Tab. 4 shows the
comparison of our method with heuristic-based IoU matching for tracking (row
1). Note that, the detection results are generated using the same model and hence
the detection accuracy (DetA) is exactly the same for both these methods.
Effect of different backbones. Tab. 5 shows the performance of our model
with different backbones, Resnet-50, Swin-L, and DINOv2. We see that DINOv2,
being a general-purpose foundation model, outperforms the other models.

3.3 Qualitative Results

Fig. 2 shows two examples of joint detection, classification, and tracking on 2
videos of the KUMC dataset (top and bottom row), along with a comprehensive
report generated for both videos. In the first example, we see 2 polyps (purple
and yellow bounding boxes). Our model correctly identifies them as 2 different
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Total video frames: 145
ID Type Fr.Ct. | IstFr. | Last Fr.
0 |AD (100%)| 56 0 56
3 |AD(92%)| 63 66 130

Total video frames: 240
ID Type Fr. Ct. | IstFr. | Last Fr.

0 | HP(51%) | 198 1 239

Fig. 2. Detection, classification, and tracking on 2 videos (top and bottom row) of
the KUMC dataset, along with comprehensive reports generated for each video. The
reports summarize the polyps IDs, the polyp type (AD: cancerous or HP: benign)
with prediction confidences, frame count (Fr. Ct.) of the polyps, their frame of first
appearance (1st. Fr.) and their frame of last appearance (Last Fr.).

: “al

Fig. 3. Detection and segmentation results on a few images from the ETIS dataset.
Our model is able to discover hard to see polyps in diverse scenes. Prediction results
are shown in red.

Image

polyps. We see a similar example in the bottom row, where our model is ro-
bust to different lighting conditions (green light and white light). Fig. 3 shows
three examples from the ETIS dataset where we perform joint detection and
segmentation on small and hard-to-see polyps. Additional results are shown in
the supplementary video.

3.4 Training Data

For joint detection and segmentation (Tab. 1 and Tab. 2), our model is trained on
900 and 550 images of Kvasir-SEG and CVC-ClinicDB respectively, along with
PolypDB [19], PolypGen [1], and KUMC [22] training datasets, to align our
backbone and encoder-decoder to colonoscopic videos. This one-step fine-tuning
removes the need to first pre-train our model on colonoscopic videos like in
prior works with colonoscopic foundation models [40, 12]. Note that KUMC [22]
dataset only has bounding-box-based annotations (with 28k training images),
whereas PolypDB, PolypGen have available segmentation masks (with 6k frames
combined). The KUMC dataset has polyp classification information (i.e., whether
a polyp is AD: cancerous or HP: non-cancerous). For this experiment, both
classes are just treated as polyps. For detection and classification (Tab. 3), our
model is directly fine-tuned on the KUMC [22] training dataset. For the unsu-
pervised tracking experiment (Tab. 4), we directly use the trained model from
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joint detection and segmentation (Tab. 1 and Tab. 2), and test it on the REAL-
Colon data without fine-tuning. For Fig. 2, we directly use the tracking module
on top of the model trained on the detection and classification task (Tab. 3).

4 Conclusion

In this paper, we introduced PolypSegTrack, a novel foundation model that
jointly addresses polyp detection, segmentation, classification and unsupervised
tracking in colonoscopic videos. Our novel conditional mask loss enables flexi-
ble training and our unsupervised and non-heuristic tracking approach reliably
tracks polyp instances across video frames. Extensive experiments on multiple
polyp benchmarks demonstrate that our method significantly outperforms exist-
ing state-of-the-art approaches in polyp detection, segmentation, classification
and tracking.

Disclosure of Interests. The authors have no competing interests to declare that
are relevant to the content of this article.
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