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Abstract. Against this endoscopic exposure correction task, although
some past studies have yielded promising results, these methods do not
fully explore the task-specific priors, and they generally require a large
number of parameters thus compromising their applications on resource-
constrained devices. In this paper, we carefully explore that regardless
of the exposure level degradation, the illumination information is usu-
ally contained in the low frequency part, and the relative smoothness
of structures in captured endoscopic images generally lead to the sparse
high-frequency representation. Motivated by such prior understandings,
we specifically construct a lightweight wavelet transform-based hierar-
chical network structure for this correction task, called WTNet, which
utilizes the inherent frequency decomposition characteristics of wavelet
transform and makes the core of network learning focus on the modelling
of low-frequency information. Based on four datasets and three different
tasks, including exposure correction, low-light enhancement, and down-
stream segmentation, we comprehensively substantiate the superiority of
our proposed WTNet. With only 1.41M model parameters, our WTNet
achieves a better balance between performance and cost, and demon-
strates favorable clinical application potential. The code will be available
at https://github.com/charonf/WTNet.
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1 Introduction

Wireless capsule endoscopy (WCE) is becoming a favorable alternative to gas-
trointestinal (GI) examinations due to its non-invasive and painless advantages
over traditional endoscopy [29]. However, the limitations of sensor hardware,
coupled with the intricate internal structure of the GI tract, often lead to the
issues of underexposure and overexposure in the captured images, which can
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Fig. 1. Top: We perform wavelet transform on endoscopic images with different expo-
sure levels and get four components, including low-frequency LL, and another three
high-frequencies LH, HL, and HH. Bottom: Take the first virtual frame as an example,
when performing inverse wavelet transform on the four components (LL of underexpo-
sure image, and HL, LH, HH of overexposure image), the image presents an underex-
posure effect. This suggests the illumination mainly exists in low-frequency.

adversely affect the subsequent diagnosis and treatment planning [25,15]. How
to effectively enhance the quality of inappropriately exposed WCE images is
gradually attracting the attention of the research community [3].

Against this exposure correction task, in recent years, with the rapid de-
velopment of deep learning, diverse deep neural network structures have been
constructed. For example, Gomez et al. [8] devised a multi-scale structure-aware
network for laryngoscopic low-light enhancement while introducing adversarial
loss to ensure the authenticity and realism of the enhanced images. Ma et al. [12]
introduced a cyclic structure and illumination-constrained generative adversar-
ial network for medical image enhancement. This innovative approach computed
local structures and illumination constraints, enabling the model to comprehen-
sively learn both the overall features and fine-grained local details of medical im-
ages. Very recently, drawing inspiration from the great success of denoising diffu-
sion probabilistic models in learning data distribution, Bai et al. [3,2] developed
different diffusion-based exposure correction methods tailored for WCE images.
As seen, most of the existing exposure correction research techniques generally
put more emphasis on designing various and complicated network structures for
better restoration performance, but neglect the full exploration and the efficient
incorporation of the inherent prior characteristics underlying the task. Besides,
although the diffusion-based enhancement methods have achieved better perfor-
mance, they typically require a substantial number of network parameters and
involve multiple sampling steps, posing huge challenges to practical deployment.

Against the aforementioned limitations, in this paper, we carefully investi-
gate the intrinsic prior property of endoscopic images under different exposure
conditions and specifically construct a lightweight network framework for this
exposure correction task. Specifically, as shown in the top row of Fig. 1, based
on the classic discrete wavelet transform (DWT), we first analyze the frequency
characteristics of endoscopic images with different lighting conditions, and ob-
serve that the endoscopic exposure correction task has specific prior properties:
1) The illumination information mainly reflects in the low-frequency component
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(i.e., LL); 2) Due to the smoothness of anatomical structures of endoscopic im-
ages [6], other high-frequency-involved components (i.e., LH, HL, and HH) are
generally relatively sparse. When we only exchange the low-frequency compo-
nents between ill-exposed and ideally-exposed images, the lighting conditions
can be finely transferred, as presented in the bottom row of Fig. 1. These inher-
ent prior investigations show that in order to enhance the ill-exposed endoscopic
images, we can make the core of network learning mainly focus on the restoration
of low-frequency components without spending too much computational over-
head on the recovery of other frequency components. To this end, motivated by
the excellent advantages of DWT in decoupling different frequency components,
and achieving the downsampling and upsampling for multi-scale learning with-
out introducing extra parameters, we meticulously devise a wavelet transform-
based hierarchical exposure correction network, called WTNet. Specifically, as
presented in Fig. 2, at the encoder stage, the deep features are hierarchically
decomposed into low-frequency components and three different high-frequency-
related components via DWT, which are then modeled based on the powerful
Transformer block and the simple depth-wise convolution layer, respectively. At
the decoder stage, it utilizes the inverse DWT to reconstruct the modeled fea-
tures at the same level into a high-resolution feature which is treated as the input
at the next level. Such careful designs not only naturally enable multi-order fre-
quency decomposition and multi-scale network learning, but also largely reduce
the parametric cost. Our main contributions are three-fold:

– We carefully explore the inherent prior characteristics underlying this en-
doscopic exposure correction task, and then construct a wavelet transform-
based hierarchical network framework, called WTNet.

– Considering the complicated degradation process of poorly exposed images,
we specifically devise an exposure correction module for the coarse illumi-
nation calibration, which would further boost the subsequent multi-order
frequency decomposition and multi-scale learning.

– Based on four publicly available datasets spanning three different tasks in-
cluding exposure correction, low-light enhancement, and downstream seg-
mentation, extensive experiments substantiate that our WTNLet can always
achieve excellent performance with only 1.41M parameters.

2 Methodology

Attributed to the powerful capability in modeling the multi-scale contextual
information, the UNet-like hierarchical network structure [14] has been widely
adopted by different image restoration methods [20,19,2]. Among these existing
techniques, during the encoder stage, for every level, most of them typically
utilize the convolution operation to downsample the deep features while doubling
the number of channels in order to mitigate the information loss. Clearly, for the
hierarchical structure with multiple levels, successive downsampling procedures
will cause the number of feature channels to increase exponentially, thus leading
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Fig. 2. The overall architecture of our proposed WTNet.

to a dramatic growth of the model parameters. Besides, they aim to construct
complicated network modules for better performance without fully analyzing the
inherent prior characteristics of the endoscopic exposure correction task.

Based on the prior observations from Fig. 1 as analyzed in Sec. 1, we find
that for the endoscopic exposure correction task, our main goal should be re-
constructing the favorable low-frequency component. To this end, we propose to
utilize the wavelet transform to decouple different frequency components, and
specifically construct a novel wavelet transform-based lightweight hierarchical
framework, called WTNet. In the proposed method, the modeling procedures
of low-frequency components and other frequency components are implemented
through high-complexity and low-complexity operators (i.e., a Transformer block
and a depth-wise convolution layer), respectively. In such a manner, the core of
network learning can be forced to mainly focus on the recovery of the low-
frequency component which complies with the prior property well as stated in
Sec. 1. The overall pipeline of the proposed WTNet is presented in Fig. 2.

Specifically, given an incorrectly exposed endoscopic image Iin ∈ R3×H×W ,
considering that the exposure degradation process is extremely complicated due
to improper techniques by operators and limited acquisition space, we first design
an exposure calibration module (ECM) to perform a coarse correction of the
lighting conditions for boosting the subsequent hierarchical modeling procedure.
As shown in Fig. 2, the ECM first projects the input image to a high-dimensional
feature space using a 1× 1 convolution, which is followed by a 5× 5 depth-wise
convolution to encode the spatial context to model the lighting conditions in
different regions. Next, the features are aggregated using a 1× 1 convolution to
estimate a light map L ∈ R3×H×W pixel by pixel. Finally, the coarsely enhanced
image Ien ∈ R3×H×W is obtained by the element-wise multiplication between
the original input image Iin and the light map L. Mathematically, the concrete
computation procedure of ECM is expressed as:

L = WC→3
1×1 ⊗ (W5×5 ⊗d (W

3→C
1×1 ⊗ Iin)),

Ien = Iin ⊙ L,
(1)

where ⊗ denotes the conventional convolution; ⊗d denotes the depth-wise con-
volution; WC→3

1×1 and W 3→C
1×1 are two 1 × 1 convolutions carrying out channel
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contraction and channel expansion, respectively; W5×5 is a 5 × 5 convolutional
kernel; and ⊙ is element-wise multiplication.

By feeding Ien into a 3×3 convolutional layer, we can obtain an initial shallow
feature F (0) ∈ RC×H×W . Then by further modeling this feature through Trans-
former blocks, we can get the deep feature F̂ (0) ∈ RC×H×W , which is processed
through a three-level symmetric encoder-decoder with a bottleneck block. As
shown in Fig. 2, at the encoder stage, the feature F̂ (i−1) ∈ RC× H

2i−1 × W

2i−1 at the
level i (i = 1, 2, 3) is decomposed into four sub-bands via DWT, including low-
frequency component F

(i)
LL, and three high-frequency-related components F

(i)
LH ,

F
(i)
HL, and F

(i)
HH , which have the same size of C× H

2i ×
W
2i . Then motivated by the

prior analysis that the lighting information mainly presents in the low-frequency
part, we propose to further model F (i)

LL and the other three components via a
long-range Operator(·) (e.g., Transformer or Mamaba) and the low-complexity
depth-wise convolutional layer, respectively. The powerful long-range modeling
capability of the Operator(·) can better guarantee the learning of low-frequency
illumination content, and the structure-aware ability of depth-wise convolution
can better help maintain high-frequency texture details with lower computa-
tional cost. Through this divide-and-conquer customized learning strategy, the
synergy between different components can be better exerted, thereby achieving
full feature modeling. For level i, the computation is formulated as:

[F
(i)
LL, F

(i)
LH , F

(i)
HL, F

(i)
HH ] = DWT(F̂

(i−1)
LL ),

F̂
(i)
LL = Operator(F

(i)
LL),

F̂
(i)
j = W3×3 ⊗d F

(i)
j , j ∈ {LH,HL,HH},

(2)

where i = 1, 2, 3; F̂ (0)
LL = F̂ (0). For Operator(·), in experiments, we adopt the

Transformer block proposed in Restormer [26] to reduce the complexity. F̂ (i)
LL ∈

RC× H

2i
×W

2i and F̂
(i)
j ∈ RC× H

2i
×W

2i are four sub-bands at level i.
In the decoder stage, starting from the bottleneck layer, through a simple

inverse DWT (IDWT), we can reconstruct the high-resolution feature from the
modeled four sub-bands at the same level. Considering that the IDWT opera-
tion is non-parametric, at the decoder stage, we also introduce the Transformer
layer to further optimize the low-frequency sub-band for better learning of high-
resolution features. Mathematically, the concrete formulation is:

F̃
(k−1)
LL = IDWT

(
F̄

(k)
LL , {F̂

(k)
j }j∈{LH,HL,HH}

)
,

F̄
(k−1)
LL = Transformer(F̃

(k−1)
LL ),

(3)

where k = 3, 2, 1; F̄
(3)
LL = F̂

(3)
LL ; F̃

(k)
LL ∈ RC× H

2k
×W

2k ; and F̄
(k)
LL ∈ RC× H

2k
×W

2k .
Please note that F̄

(0)
LL = Concat(F̂

(0)
LL , F̃

(0)
LL) ≜ Concat(F̂ (0), F̃ (0)) ≜ F̄ (0). Here

Concat(·) denotes the concatenation operation along the channel dimension.
Finally, by feeding F̄ (0) into an extra Transformer layer for refinement followed
by a 3×3 convolutional layer, we can obtain the residual image Ires ∈ R3×H×W .
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Table 1. Comparisons on the exposure correction task based on CEC and Endo4IE.

Methods Ref. CEC Endo4IE ParamsPSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓
MIRNetv2 [27] TPAMI 22 28.36 93.58 0.1080 23.85 82.33 0.2376 5.89M

LLCaps [3] MICCAI 23 27.55 85.95 0.2366 - - - 119.73M
LA-Net [23] IJCV 23 - - - 23.51 83.78 0.1186 0.56M
PyDiff [30] IJCAI 23 28.18 95.79 0.0941 24.73 84.78 0.2148 32.00M

PromptIR [13] NIPS 23 28.27 83.14 0.0717 23.73 79.57 0.2396 32.96M
LACT [1] ICCV 23 28.40 93.09 0.1103 22.92 76.88 0.2671 -
PIP [11] Arxiv 23 25.01 70.09 0.1527 25.28 81.94 0.2150 26.82M

Retinexformer [4] ICCV 23 37.18 97.22 0.0356 27.22 85.73 0.2092 1.61M
MambaLLIE [18] NIPS 24 33.92 95.56 0.0548 27.43 85.56 0.2132 2.28M

EndoUIC [2] MICCAI 24 29.65 96.80 0.0655 25.49 85.20 0.1937 28.91M
WTNet (Ours) - 36.82 97.43 0.0343 27.91 86.14 0.1954 1.41M

As seen, in our WTNet, low and high frequencies are finely decoupled through
the DWT, which are separately processed in a multi-scale hierarchical structure.
Most of the computational overheads occur only in the low-dimensional low-
frequency components. This not only complies with our design motivation but
also helps reduce the model complexity.

3 Experiments

3.1 Experimental Setup

Datasets. Following [2], we comprehensively evaluate our method on two expo-
sure correction datasets and two low-light image enhancement (LLIE) datasets:
1) Capsule Endoscopy Exposure Correction (CEC) [2]. This dataset con-
tains an equal number of overexposed and underexposed images. The training set
consists of 800 images, while the test set includes 200 images. 2) Endo4IE [7].
This dataset consists of 956 underexposed and 1194 overexposed image pairs, of
which 1552 images are used for training while 598 images are used for testing.
3) Kvasir-Capsule (KC) [16] and Red Lesion Endoscopy (RLE) [5].
These two datasets are composed of low-light images. The former contains 2000
training images and 400 testing images, and the latter contains 946 training
images and 337 test images. Besides, we further conduct a downstream segmen-
tation task based on the RLE dataset with pixel-wise annotations to evaluate
the effectiveness of our method in clinical applications.
Evaluation Metrics. Following [3,2], the peak signal-to-noise ratio (PSNR)
[9], the structural similarity index measure (SSIM) [17], and Learned Perceptual
Image Patch Similarity (LPIPS) [28] are used for quantitative evaluation. For
the downstream segmentation task, we follow [3] and utilize the mIoU metric.
Implementation Details. Our WTNet consists of four layers of encoder-decoder.
The number of Transformer blocks is [4, 7, 7, 8] from Level 1 to Level 4, and
the number of channels is [40, 40, 40, 40]. We extract patches with 128 × 128
pixels from training images, and the batch size is set to 8. The Adam optimizer
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Fig. 3. Comparisons on two different images randomly selected from the CEC testing
set. For every method, the upper row is the enhanced result and the lower row is the
error map between the enhanced image and the ground truth.

with β1 = 0.9 and β2 = 0.99 is used. The initial learning rate is set to 2× 10−4

and steadily decreased to 1 × 10−6 by the cosine annealing scheme. The model
is trained in a total of 150k iterations. The experiments are conducted in the
PyTorch framework with four NVIDIA 4090 GPUs. For the downstream seg-
mentation task, we train the UNet using the Adam optimizer with β1 = 0.9 and
β2 = 0.99, while the learning rate is set to 2× 10−4 and the number of the total
epochs is 100 with the batch size of 12. A combination of cross-entropy loss and
Dice loss is utilized to supervise the segmentation training process.

3.2 Comparisons on the Exposure Correction Task

We first execute the evaluation on the exposure correction task. Table 1 re-
ports the quantitative results of different state-of-the-art methods on these two
datasets, including CEC and Endo4IE. As observed, our WTNet always per-
forms competitively across all different metrics on both datsets. Fig. 3 shows
the enhanced results and corresponding error maps of different methods on the
CEC dataset. It clearly shows that the results recovered by our method under
different lighting conditions are closer the ground truth images. It is worth men-
tioning that our method only requires 1.41M, which is extremely lightweight.
These results show that the proposed WTNet makes a better trade-off between
performance and cost.

3.3 Comparisons on the Low-Light Image Enhancement Task

To further evaluate the potential of our method, we add the comparisons on
the LLIE task based on KC and RLE datasets. Table 2 shows that our WTNet
achieves the best performance on almost all metrics on these two datasets, which
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Table 2. Comparisons on the LLIE task based on the KC and RLE datasets.

Methods Ref. KC RLE ParamsPSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓
MIRNetv2 [27] TPMAI 22 31.67 95.22 0.0486 32.85 92.69 0.0781 5.89M
SNR-Aware [21] CVPR 22 30.32 94.92 0.0521 27.73 88.44 0.1094 4.01M

LLCaps [3] MICCA 23 35.24 96.34 0.0374 33.18 93.34 0.0721 119.73M
PIP [11] Arxiv 23 33.60 95.09 0.0302 28.60 87.27 0.0977 26.82M

CFWD [22] Arixiv 24 35.88 96.26 0.0467 30.14 90.25 0.1088 -
Dif-LOL [10] ACM TOG 23 33.60 95.42 0.0847 28.46 82.52 0.1437 -
LA-Net [23] IJCV 23 30.84 95.32 0.0562 25.92 85.72 0.1491 0.56M
CLE [24] MM 23 26.55 87.87 0.0829 26.20 81.42 0.1134 37.01M

PyDiff [30] IJCAI 23 35.07 96.60 0.0364 33.21 93.54 0.0774 32.00M
PromptIR [13] NIPS 23 33.54 96.77 0.0377 32.07 93.30 0.0694 32.96M

Retinexformer [4] ICCV 23 37.14 97.67 0.0219 32.81 93.23 0.0831 1.61M
MambaLLIE [18] NIPS 24 37.45 97.25 0.0213 33.36 93.30 0.0784 2.28M

EndoUIC [2] MICCAI 24 36.85 97.04 0.0255 33.50 93.99 0.0658 28.91M
WTNet (Ours) - 38.64 97.89 0.0199 34.37 94.00 0.0772 1.41M

Table 3. Comparisons on the downstream segmentation task on the RLE dataset.

Metric MIRNetv2 [29] LLCaps [3] PIP [11] CFWD [22] Dif-LOL [10] LA-Net [23] SNR-Aware [21]
mIoU ↑ 63.14 66.47 59.46 51.47 62.46 52.57 58.95
Metric CLE [24] PyDiff [30] PromptIR [13] Retinexformer[4] MambaLLIE[18] EndoUIC[2] WTNet (Ours)
mIoU ↑ 45.33 62.56 59.92 65.91 68.87 68.97 69.73

substantiates its superior universality. To further validate the advantages of our
approach, following [3], we compare the performance of different methods on
the downstream segmentation task on the RLE dataset. As shown in Table 3,
our method obtains the best segmentation performance with the highest mIoU
score. This fully indicates the clinical value of our method.

3.4 Ablation Studies

We further conduct ablation experiments to verify the effectiveness of the pro-
posed module in WTNet. As shown in Table 4, by only replacing the default
downsampling/upsampling operations in baseline (i.e., Restormer) with the pro-
posed wavelet transform strategy, WTNet1 can significantly reduce the number
of model parameters while maintaining similar performance. In addition, the in-
troduction of depth-wise convolution on high-frequency components and ECM
can both further improve the performance with almost no additional parameters.
These results fully demonstrate the effectiveness of our designs.

4 Conclusion

Against this endoscopic exposure correction task, we carefully investigated the
task-specific priors and then utilized the wavelet transform to construct a simple
yet effective lightweight network framework, called WTNet. Extensive experi-
ments conducted on four datasets demonstrated the comprehensive effectiveness
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Table 4. Ablation study based on Endo4IE. “WT” denotes the proposed wavelet trans-
form based downsampling/upsampling operation. “DWC” means depth-wise convolu-
tion executed on high-frequency components. “ECM” is exposure calibration module.

Variant UNet Backbone WT DWC ECM PSNR ↑ SSIM ↑ LPIPS ↓ Params

Baseline ! % % % 27.61 86.10 0.1992 18.78M
WTNet1 ! ! % % 27.73 86.05 0.2023 1.40M
WTNet2 ! ! % ! 27.76 86.04 0.1999 1.41M
WTNet3 ! ! ! % 27.84 86.08 0.1973 1.41M

WTNet (Ours) ! ! ! ! 27.91 86.14 0.1954 1.41M

of our proposed WTNet in balancing performance and cost. Besides, through a
downstream segmentation experiment, we further validated the application po-
tential of our method. Especially, our model only requires 1.41M parameters,
which is extremely friendly for the deployment on the resource-limited devices.
Please note that Restormer is just a way for us to experiment. In the future, we
will attempt to explore more configurations on Operator(·) in Eq. (2).
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