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Abstract. The detection of cephalometric landmarks is crucial for or-
thodontic diagnosis. Current methods mainly focus on utilizing contex-
tual information to detect landmarks while overlooking the challenges
posed by domain gaps. In this paper, we propose a contour-guided frame-
work that leverages cranial soft /hard tissue contours as domain-invariant
anatomical priors. The method introduces a joint attention module to
fuse the topological features corresponding to the contours with con-
textual features, ensuring the accuracy of landmark positioning. Ad-
ditionally, we address anisotropic prediction uncertainty in unseen do-
mains through a direction-aware regression module, which incorporates
contour geometry to regularize error distributions. Evaluated on the
multi-domain datasets with five source and three unseen target domains,
our framework demonstrates superior robustness to domain shifts while
maintaining anatomical plausibility, achieving state-of-the-art cross-domain
localization accuracy.
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1 Introduction

Cephalometric analysis utilizes 2D images generated by X-ray, providing clini-
cians with crucial information on patients’ dental, skeletal, and facial relation-
ships. As an indispensable part of orthodontic and orthognathic treatments,
a pivotal step in this process is the detection of key anatomical landmarks. In
practice, landmarks are located manually, which is tedious, time-consuming, and
unreliable in achieving reproducible results. Therefore, fully automatic and ac-
curate landmark localization has been a long-standing area of significant need.

Recent deep learning-based landmark detection methods [1,3,12] have ad-
vanced through multi-scale contextual information extraction and global-local
feature interaction in single domain application. For instance, Chen et al. [3] de-
veloped an attentive feature pyramid fusion module for feature fusing, while Lee
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(a) Existing methods utilize only landmark- (b) Our method based on contour-landmark
based features(sensitive to image appearance). joint features shows robustness across domains.

Fig. 1: Difference between existing methods and ours.

et al. [11] modeled spatial structure via global coordinate regression and local
feature cropping. However, domain gap caused by variations in image properties
(e.g., resolution, contrast) significantly impair cross-domain generalization, as
shown in Fig. 1(a). The yellow rectangle highlights the differences in feature dis-
tributions across domains, particularly in lower layers, which are highly sensitive
to image appearance variations.

To address this cross-domain degradation, researchers have employed strate-
gies like domain adaptation. Jin et al. [§] combined self-training with adversarial
learning for knowledge transfer, and Wu et al. [16] enhanced robustness through
anatomical prototype relation mining. Despite reducing annotation dependency,
these methods still require retraining on the target domain, limiting clinical
scalability due to data acquisition costs and workload.

Compared to domain adaptation, we adopt domain generalization by extract-
ing domain-invariant features, as cranial soft/hard tissue contours, to bridge
domain gaps in cephalometric landmark detection. Unlike landmarks, which are
sensitive to image appearance, these contours encode continuous geometric priors
that inherently resolve domain gaps. As shown in Fig. 1(b), by learning asso-
ciations between landmarks and anatomically defined boundaries, our method
establishes task-specific structural constraints, forcing the network to focus on
domain-agnostic topology.

In this paper, we propose a contour-aware joint learning (CJL) framework
for cross-domain cephalometric landmark detection. The method first models
cranial soft/hard tissue contours as domain-invariant priors to capture struc-
tural consistency. A multi-scale CNN extracts contextual features, which are
then fused with contour features as structural features through a joint attention
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Fig.2: The pipeline of our method: the top branch, represented by several blue
blocks, corresponds to the Contour-aware Module, the shaded area denotes the
Joint Attention Module, and L,.4 indicates the Direction-sensitive Regression
Module. The Pyramid CNN encodes contextual features, while the Landmark
Decoder generates landmark heatmaps.

module (JAM). This module aligns contour features and landmark features in
a shared embedding space, generating globally consistent hierarchical features.
Furthermore, we observed that landmark predictions in the target domain ex-
hibit higher uncertainty along the tangential direction of contours compared to
the normal direction. This anisotropic distribution motivated us to propose a
direction-sensitive regression module (DRM). By guiding landmark regression
based on the tangential and normal directions of contours, our method incor-
porates anatomical plausibility into landmark prediction, enhancing robustness.
The contributions of this paper are as follows:

1. We explore domain generalization by using cranial contours as domain-
invariant priors for cephalometric landmark detection.

2. We propose a contour-landmark joint attention module to generate globally
consistent hierarchical features for cross-domain generalization.

3. We introduce a novel regression strategy that leverages contour structure to
mitigate anisotropic prediction uncertainty, enhancing cross-domain stabil-
ity.

4. Our method achieves state-of-the-art performance on unseen target domains,
demonstrating superior generalization capability.

2 Method

Domain gaps present a significant barrier in landmark detection tasks, partic-
ularly when dealing with variations in imaging devices and parameters across
clinical environments. Our contour-aware joint learning (CJL) framework ad-
dresses this challenge by modeling cranial contours as anatomical structural
priors that exhibit intrinsic invariance across domains. As depicted in Fig. 2, the
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framework consists of three synergistic components: the Contour-aware Mod-
ule (Sec.2.1), the Joint Attention Module (Sec.2.2), and the Direction-sensitive
Regression Module(Sec 2.3).

2.1 Contour-aware Module

The inherent invariance of anatomical contours across different domains stems
from the structural consistency of cranial anatomy. Specifically, contours serve
as stable structural priors,reducing reliance on low-level features (e.g., pixel in-
tensity gradients) that are prone to scanner-induced artifacts. Moreover, they
enforce anatomical plausibility through explicit structural constraints (Delaire’s
analysis [4]). Compared to direct landmark detection, this hierarchical represen-
tation establishes an interpretable mapping that aligns with clinical reasoning
processes.

Medical-defined landmarks P = {pi € RQ}iLzl are interpolated into N anatom-
ical contours using cubic splines:

3

Cj(t) = ZBk(t) *Pm+ks te [Ov 1}7 (1)
k=0

where Bg/(t) denotes basis functions, and p,,+x are the landmarks belonging to
contour ¢;, with m as the starting index of the landmarks, and k € {0,1, 2, 3},
indicating the use of four control points. Then, for each contour c;, we compute
a distance transform D; and Gaussian-smoothed heatmap M [18]:

Djwy) =  min |(z,y) - (@, 92, (2)
My (o) = exp (<240 ) 1D 0,0)] < 30), ®)

where o controls the spatial uncertainty, and we set ¢ = 1.0. Here, I(-) is an
indicator function.

To obtain geometric features and sematic anatomical information, we em-
ploy a pretrained Vision Transformer (ViT) as the image encoder [10]. Given a
cephalometric image I, it is first cropped into non-overlapping 16 x 16 patches,
which are then flattened and projected into D-dimensional tokens. After adding
position embeddings, these tokens are fed into M multi-head self-attention (MSA)
layers and MLP blocks [5], ultimately generating a contour feature map with a
resolution of %6 of the original image.

2.2 Joint Attention Module

The hierarchical topology between contours and landmarks establishes con-
straints for feature fusion. As depicted in Fig. 1(b), the Hierarchical Consistent
Structure comprises three structural hierarchies: base-level landmarks [, inter-
mediate contours ¢ , and overlying tissue regions (shaded areas), encapsulating
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the structural topology with both intra-layer and cross-layer relationships. To
capture these relationships, we develop a joint attention mechanism that enables
cross-hierarchy message passing through alternating query strategies.

Given the structural features F,;; € R(16X16)*D and the contextual features
Fepn = {Fk}zzlwith resolutions of %, 1—16, é, we iteratively apply Eq. (4) and
Eq. (5) for N rounds. In each round, we take F};, as the query, and F?,, as the
key and value for the contour attention layer, as shown in Eq. (4). The resulting
feature f"\iit is then passed through the encoder layer in the i-th block to produce
the updated feature F'-'. After that, F?,  is used as the query, and F'! as the
key and value for the structural attention layer, as shown in Eq. (5).

Fii = Fhiw + 7" Attention (norm (F.;,) ,norm (F.,.,,)) (4)
Finn = Fiun + Attention (norm (7)), norm (FZH)) (5)

where the norm(-) is LayerNorm [2] and the attention layer is Attention(-) sug-
gests using sparse attention [20].

2.3 Direction-sensitive Regression Module

In cross-domain landmark detection, the prediction distributions of landmarks
exhibit relevance to contours. As visualized in Fig. 1(b) ("Contours and Anisotropy
Distribution"), arrows encode the deviation of landmark predictions. For land-
mark A on the contour, its probability distribution exhibits higher variance
along the contour’s tangential direction At and lower variance along the normal
direction An, demonstrating anisotropic characteristics (blue ellipse). In con-
trast, non-contour landmark B shows isotropic uncertainty with uniform variance
around the ground truth. Building upon this correlation, we propose a contour-
aware regression strategy that adjusts error tolerance along the tangential t and
normal n directions.

From the contour heatmaps Fi.ontour generated by the contour-aware module,
we generate contour-aware direction fields by computing pixel-wise tangent t and

normal n vectors via:
(an an>
ox 7’ O
n(w,y) =rop—— (6)

N |VFcontour|2

(% ,%)
oy ox
tzy) = o

|VFcontour |2
where partial derivatives are computed using Sobel operators, ensuring differ-
entiability. We then project the offset between the predicted landmark p and
its ground truth p* onto the directional vectors, obtaining the tangent At and
normal An offset components.

To adaptively address the anisotropic distribution, we compute direction-

specific energy values as moving averages of squared errors:

EF =aEF' 4 (1-a)At?, EF=aEF!+(1-a)An? (7)



6 X. Liang et al.

with a smoothing factor o = 0.9. The regression loss becomes:

1 N At An'
Lreg_NZi—1<Et+6+En+€>’ (8)

where € is set to 107° to prevent division by zero.

In the prediction module, we combine the contour heatmaps, landmark heatmaps
and anisotropic offsets to predict landmark positions. The loss function Ly, is de-
fined to be mean logistic losses between the predicted landmark heatmaps and
the ground truth. The loss function L,,s. is defined to be the L2 loss between
the predicted contour heatmaps and the ground truth heatmap Af;. The final
loss fuction is defined as follows:

L= ﬁ'r'eg + /\1£h + )\2£msea (9)

where A\ = 2.0, A\x = 5.0.

3 Experiments

3.1 Experimental Settings

Dataset: To validate cross-domain generalization, we construct a multi-domain
benchmark combining the ISBI 2023 Challenge dataset [9] (700 images from
7 different devices including Planmeca ProMax®) 3D, Hyperion X5 2D PAN
CEPH and so on) and ISBI 2015 dataset [15] (400 images). For cross-domain
setting, we split the data into five source domains (832 training images) and
three unseen target domains (400 test images) based on acquisition devices,
with resolution varying from 1280 x 960 to 2560 x 1920. All evaluations adopt
the standardized 19-landmark definitions from ISBI 2015.

Contours: Eight contours are involved in this work (e.g., maxillary bone outline,
mandibular bone outline). These contours are well-established in cephalometric
literature [7] and have been validated by clinical experts. The contour structures
and landmark-contour mapping rules (e.g., Points Pogonion, Meton, Gonion on
the mandibular bone outline) remain consistent and valid even with an increasing
number of landmarks.

Implementation Details: We employ the ImageNet-1K pre-trained weights
from DeiT (Touvron et al. [14]) to initialize our ViT-B model with embedding
dimensions of 768, depth of 12, and 12 attention heads. A pre-trained VGG-
19 [13] is as the multi-scale CNN backbone. To save time and memory, we set up
a joint learning interaction for every 4 embedding layers, meaning the JAM runs
M=3 times. The entire framework is optimized using the Adadelta optimizer
with default configurations. The training process takes approximately 4 hours
for 150 epochs on three Geforce RTX 3090 GPUs.

Evaluation Metrics: Following previous studies [15], we evaluate the model’s
performance using two commonly used metrics: 1) Mean Radial Error (MRE),
which calculates the average Fuclidean distance between the predicted and
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Table 1: Results on source domain and target domain, respectively.
Source Domain Test Dataset Target Domain Test Dataset
Model |MRE | SDR(%) 1 MRE | SDR(%) 1
(mm) | lmm 2mm 3mm 4mm | (mm) [ lmm 2mm 3mm 4mm
FPA [6] 1.89 |29.56 63.58 82.27 89.92| 4.43 | 4.58 15.10 30.21 46.56
YOLOs [19]| 1.27 [55.42 82.01 91.47 95076| 2.41 [44.98 68.56 82.05 88.32
AFPF [3] | 1.13 |58.05 86.87 95.22 97.96| 1.81 |47.34 76.62 83.61 83.58
Wu [17] 1.12 |62.88 86.04 93.85 96.72| 1.62 |51.35 75.89 86.09 91.41
CeLDA [16]| 1.15 |56.24 84.26 94.33 97.94| 1.51 |54.07 80.40 88.33 92.07
Ours 1.09 |64.15 86.55 93.95 97.10| 1.43 |55.25 80.64 89.58 93.78

ground-truth landmarks; and 2) Successful Detection Rate (SDR), defined as the
percentage of landmarks accurately detected within distances of 1.0mm, 2.0mm,
3.0mm, and 4.0mm from the ground-truth landmarks. It is worth mentioning
that we specially compared SDR within an extremely small error range (within
1 mm) to validate the accuracy of landmark detection under high precision.

3.2 Comparison with SOTA Approaches

We compare our CJL with several state-of-the-art cephalometric landmark detec-
tion models, including recent classical methods (AFPF [3], FPA [6], YOLO [19]),
and CelDA [16]—a method specifically designed to address the domain gap be-
tween adults and adolescents. We also compare with the recent champion method
proposed by Wu et al. [17]. To ensure fairness, all competing approaches were
retrained with the same configurations on our cross-domain dataset.

From Table 1, we can observe that other models perform significantly worse
on the target domain compared to the source domain. For example, AFPF shows
a higher MRE (1.81 vs. 1.13) and lower SDR (76.62% vs. 86.04% within 2mm),
indicating that the domain gap leads to severe performance degradation. Al-
though our method does not achieve optimal values across all source domain
metrics, it consistently outperforms other competing approaches in all met-
rics. Notably, our model exhibits only a 0.3d4mm MRE degradation compared
to source domain performance, demonstrating superior cross-domain robustness
compared to existing approaches (CeLDA: 0.36mm; Wu et al.: 0.5mm; AFPF:
0.68mm; YOLO: 1.14mm; FPA: 2.54mm).

As shown in Fig. 3, we present the comparative performance across methods
under significant appearance discrepancies between source and target domain
datasets. On the target domain, AFPF and YOLO exhibit substantial landmark
displacements (indicated by yellow arrows). In contrast, while other methods
avoid such failures, our approach demonstrates enhanced precision compared
to Wu and CeLDA. The yellow rectangles highlight CJL’s superior localization
accuracy in braces-present /absent cases. The blue rectangles further validate our
method’s enhanced precision in contour lines.
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Fig. 3: Qualitative results of three models on target domain test data. Green
dots are GTs, and red dots are predictions. arrows denote significant
displacement between predictions and GTs. Rectangles indicate that our model
performs better than the others.

Table 2: Ablation analysis for our proposed CJL method.

Source Domain Target Domain

CAM JAM DRM|MRE | SDR(%) T MRE J SDR(%) 1

(mm) [ lmm 2mm 2.5mm 3mm | (mm) | lmm 2mm 2.5mm 3mm

1.44 [59.84 78.95 90.05 92.79| 1.81 [47.34 76.62 83.61 87.66
1.25 |61.89 85.06 91.01 92.81| 1.62 |50.10 79.30 85.12 87.79
v 1.21 |59.84 85.78 91.21 93.47| 1.50 |52.28 79.62 86.22 89.46
1.15 [63.42 85.55 91.08 93.87| 1.53 [53.35 80.04 86.00 89.35
v v | 1.09 |64.15 86.55 91.18 93.95| 1.43 |55.25 80.64 86.53 89.58

ASENENEN
\

3.3 Analytical Ablation Studies

To validate the effects of our network components, we conducted ablation ex-
periments by augmenting the base network, with the results shown in Table 2.
We observed that adding only the CAM and simply concatenating contours
with baseline features significantly improved performance on the source domain
(MRE decreased from 1.44 to 1.25). Further incorporating the JAM module led
to notable improvements in SDR at the 2.5 mm and 3 mm thresholds on the
target domain, increasing by 1.10% and 1.67%, respectively. We attribute these
improvements to the interaction of features from different sources (contours and
contextual), which enhanced deep anatomical features and reduced large devi-
ations. When only the CAM and DRM were added, MRE and SDR within 1
mm improved significantly, benefiting from the direction-based regression loss
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optimization. Our method achieved the best performance across all module con-
figurations.

4 Conclusion

In this paper, we propose a contour-guided cross-domain learning (CJL) frame-
work for cephalometric landmark detection. By leveraging cranial soft/hard tis-
sue contours as domain-invariant anatomical priors and incorporating a joint at-
tention module, our method effectively bridges domain gaps and enhances cross-
domain generalization. Additionally, by introducing an anisotropic regression
module, we further improve landmark detection accuracy across cross-domain
datasets. Experimental results on the multi-domain CEPHA29 and ISBI 2015
datasets demonstrate the effectiveness of our approach in maintaining anatomi-
cal plausibility and achieving state-of-the-art performance under diverse imaging
conditions.
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