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Abstract. Brain effective connectivity (EC) is key to understanding
causal neural interactions and brain organization. However, learning EC
from single-modal brain data, such as functional magnetic resonance
imaging (fMRI) or electroencephalography (EEG), is limited by the in-
ability to simultaneously capture sparse temporal and spatial informa-
tion. This paper proposes a novel multimodal sparse generative flow net-
work (MSGFlowNet), which integrates fMRI and EEG data through an
attention-guided encoder and employs a multi-head self-attention sparse
Transformer to extract features from the fused data. These features are
then processed by two output heads of the generative flow network: one
computes state transition probabilities and updates the mask, while the
other determines the probability of generating a termination state. Ex-
periments on synthetic and real-world datasets demonstrate that MS-
GFlowNet significantly outperforms state-of-the-art methods.

Keywords: Brain Effective Connectivity - Generative Flow Network -
Sparse Transformer - functional Magnetic Resonance Imaging - Elec-
troencephalography.

1 Introduction

Brain effective connectivity (EC) describes the causal relationships between
brain regions and is crucial for understanding brain function [7,17,30]. Cur-
rently, EC learning methods fall into two categories: traditional assumption-
based statistical methods and data-driven deep learning methods [21]. Tradi-
tional methods like structural equation modeling (SEM) [18], dynamic causal
modeling (DCM) [8], and Granger causality analysis (GCA) are widely used but
struggle to model complex brain networks due to their strong assumptions.
Deep learning has advanced data-driven EC learning [4]. Graph neural net-
works (GNNs) leverage brain network topology to model causal relationships,
with models such as dynamic diffusion-variational GNN [15] and directed struc-
ture learning GNN [2] making progress in brain disease classification. Recurrent
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neural networks (RNNs) are well-suited for time-series modeling, with a Granger
causality estimator based on the recurrent neural network [29] capturing time
lags and nonlinear dependencies.Recurrent neural networks (RNNs) are well-
suited for time-series modeling, with a Granger causality estimator based on
the recurrent neural network [27]capturing time lags and nonlinear dependen-
cies. Several approaches have been developed to address time-varying causal
relationships [5] and developing more rigorous model selection frameworks [13].
Generative adversarial networks (GANs) have shown promise in data augmen-
tation and missing data imputation. Furthermore, the framework incorporates a
diffusion model-based EC learning method [12] and integrates dynamic EC with
structural EC for brain network classification [3]. However, these approaches
primarily infer EC from functional magnetic resonance imaging (fMRI) [25],
neglecting the potential of multimodal integration.

fMRI provides high spatial resolution but low temporal resolution, whereas
electroencephalography (EEG) offers high temporal resolution [31, 22] but lower
spatial resolution. Combining both modalities enhances EC learning accuracy
but presents challenges [26]. Anwar et al. inferred EC using GCA but did not fully
integrate fMRI and EEG information [19]. Tu et al. proposed a linear state-space
model that combines temporal information from both modalities but struggles
with nonlinear causal relationships [28]. Liu et al. proposed a novel method to
bridge modality differences but failed to address high-dimensional sparsity after
data fusion [16]. Efficient integration of fMRI and EEG, while overcoming high-
dimensional sparsity, remains a key challenge.

To address these issues, we propose a novel multimodal sparse generative
flow network (MSGFlowNet). The model consists of three main stages: data
fusion, sparse feature extraction, and state generation. MSGFlowNet redefines
the EC learning problem as a generative task and effectively fuses fMRI and EEG
data using an attention-based encoder. Subsequently, a sparse Transformer with
multi-head self-attention is employed to extract features from the fused data, and
two output heads in the generative flow network (GFN) compute the EC state
and state transition probabilities. Finally, the EC is updated and generated.

Our contributions are summarized as follows:

1. This is the first study that develops a sparse generative flow network to
learn brain effective connectivity from fMRI and EEG data.

2. We utilize fMRI and EEG data as complementary modalities, effectively
leveraging the high spatial resolution of fMRI and the high temporal resolution
of EEG to overcome the limitations of using a single modality.

3. We propose a novel sparse Transformer architecture that effectively ex-
tracts key features from high-dimensional sparse fused fMRI-EEG data, signifi-
cantly enhancing EC learning accuracy.

2 Related work

Brain effective connectivity. The brain EC can represent as a directed graph
G = (V, E,W), containing |V'| nodes and |E| directed edges, which reflect the
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Fig. 1. Flowchart of MSGFlowNet. The framework processes multimodal data through
three stages: (1) fusion of fMRI and EEG signals, (2) sparse Transformer for feature
extraction, and (3) generation of EC states with GFN.

regions of interest (ROIs) in the brain and the causal relationships between these
regions, respectively. The weight or adjacency matrix W is an asymmetric ma-
trix used to represent the causal effects between brain regions of brain data.
Generative flow network. GFN is a probabilistic model over discrete sam-
ple spaces with a compositional structure [6], which is a recently introduced
method to train energy-based generative models. They have now been success-
fully applied to a variety of settings such as biological sequences, causal discovery,
discrete latent variable modeling, and computational graph scheduling.

3 Method

In this section, we present MSGFlowNet, a novel three-stage method for learning
brain effective connectivity networks from complementary fMRI and EEG data.

3.1 Main Idea

To accurately learn EC from fMRI and EEG data, we propose MSGFlowNet
model. MSGFlowNet redefines the EC learning problem as a generative task
and effectively fuses fMRI and EEG data using an attention-based encoder.
Subsequently, a sparse Transformer with multi-head self-attention is employed
to extract features from the fused data, and two output heads in the generative
flow network compute the EC state and state transition probabilities. Finally,
the EC is updated and generated.

3.2 fMRI and EEG Feature Fusion

We propose attention-guided a multimodal encoder for integrating fMRI and
EEG signals into a unified representation, thereby enabling efficient cross-modal
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information integration [20]. By combining the fMRI signal x; and EEG signal
Ze, we introduce fMRI and EEG source encoding to align their spatial and
temporal resolutions. These encoding modules solve the inverse problems for
both modalities, generating fMRI and EEG source-level time series (s¢ and s.).
For fMRI, the BOLD inverse problem is defined by the equation:

Sf:fEfH+€f, (1)

where z; € RM7*Tr is the measured fMRI signal of Ny brain regions during
Ty instants, s; € RNr*Te is the fMRI sources-level time series, and T, is the
duration of the EEG signal. H € R”7*T¢ is the BOLD response matrix consisting
of trainable neural network parameters. €y is the Gaussian noise. For EEG, the
inverse problem estimates the neural sources as:

Se :Ixe+eea (2)

where z, € RNe*Te is the measured EEG signal of N, electrodes during T.
instants. s, € RV#*Te ig the EEG sources-level time series. I € RMe*Ns ig
a leadfield matrix consisting of trainable neural network parameters. ¢, is the
Gaussian noise.

In the attention-guided layer, the query(Qp,), key (K, ), and value(V;,) vec-
tors are generated from the input data through fully connected layers. Specifi-
cally, @, is derived from the input s,,, while K, and V,, are extracted from the
fMRI source-level time series sy and EEG source-level time series s.. The atten-
tion map A is generated by computing the dot product between @Q,, and K,,.
Then, A is multiplied by V,,, to obtain the fused feature time series, enabling
efficient capture and fusion of intersecting information across modalities.

The fusion data is represented as a two-dimensional matrix A:

a1 -+ G1Ny
ANf><Te _ . (3)

ar,1 " 0T, Ny

where Ny is the number of brain regions, T, is the number of time points, and
a;; represents the activity level of the i-th brain region in the j-th time point.

3.3 Sparse Transformer for Feature Extraction

The fMRI data (Ny xTy) and EEG data (V. xT,) have high spatial and temporal
resolutions, respectively, but their fusion results in high-dimensional sparsity. To
address this issue, we propose a sparse feature extraction model.

A causal graph is a mathematical model based on a directed acyclic graph
(DAG), represented as G = (N, E), where N is the set of brain regions and E
is the set of edges. These edges represent the connectivity relationships between
two brain regions. Causal graphs focus not merely on probabilistic dependencies
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between variables, but on causal mechanisms. Their joint probability distribution
is decomposed via the causal structure into:

P(X1, X2, X3, X,) = HP(XAP@(X,;)), (4)

where P,(X;) is the set of parent nodes for X;. The task is to learn the hidden
EC G = (N, E) behind the high-dimensional sparse data.

Due to the sparsity of the fused data, direct input often leads to less accurate
learned EC. Therefore, we design a sparse Transformer module, which uses the
sparse multi-head self-attention mechanism to extract important features from
the sparse data and integrates them into a global representation. This mechanism
is more advantageous than the conventional single-head self-attention in learning
long-term dependencies. The sparse Transformer module mainly relies on the
sparse multi-head self-attention mechanism, which is defined as follows:

qu )
Atten;(qi, K,V) = ZZ; R ) = Ep(i, a0 [vj]- (5)

The self-attention combines the value matrix V' by computing the conditional
probability p(k;|¢;). Sparsity is introduced by limiting the attention probability
distribution, ensuring that only a portion of the keys interact with the current
query matrix. The sparsity measure M(g;, K) is given by:

T

L
M(q;, K 1nzexp aik] [/ dy) — Z ] (6)

Due to the high complexity of the dot product operation and potential insta-
bility caused by the log-sum-exp (LSE) function, we use the maximum average
method to reduce complexity, yielding:

~ ik 1 ik
M:maxj{\/@}—L;(\/@). (7)

Finally, the sparse multi-head self-attention is optimized by traversing each
key and adopting a Top-u query, as shown in:

Atten®P*"¢(Q, K, V) = softmax <C\2/[§T€T V) ) (8)

This approach significantly improves the efficiency of the Transformer in han-
dling long sequences, reducing both computational and storage overheads while
maintaining the expressive power of the attention mechanism. It is especially
suitable for tasks that involve large-scale data and high-dimensional features.
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3.4 GFN-based EC State Generation

After extracting sparse features, MSGFlowNet initiates the dynamic construc-
tion process of EC through GFN. The goal is to model the posterior of the ex-
planatory graph Q(G|D) given the data and jointly learn the distribution over
parameters § that parameterize the latent drift function f(z). The generative
process of the GDN proceeds as follows::

p(G,@,D) = p(G)p(9|G)p(D‘G,9) (9>

The terminal state sy indicates the termination of the sequential construc-
tion. Some states s € Y are connected to sy, called complete states. Each com-
plete state has a reward R(s) > 0, and for incomplete states s € S\Y, R(s) = 0.

The goal is to find a flow that satisfies the flow-matching condition for all
states s:

Yo F(s—s)— Y. Fi(s =5 )=R(s). (10)
s€Pa(s") s €Ch(s")
When this condition is satisfied, MSGFlowNet samples from the complete
states s € Y with probability proportional to R(s). To fit the parameters 6 of
the forward transition probabilities, we minimize the detailed-balance loss:

2

og PLODP(GIG ) PG

Loss(9) =Ex R(G)Py(G'|G)Py(s¢|G")

. (11)

The forward transition probabilities are parameterized by neural network.
We model these transitions with two parts: one for the termination probability
Py(s¢|G), and another for the non-termination transition Py(G'|G, —sy):

Py(G'|G) = (1= Po(s¢|G)) Po(G'|G, —sp). (12)

The transition G — G’ involves adding edges to the graph, and a mask Mask
is used to filter out invalid actions. The reward for graph G is given by:

R(G) = P(G)P(D|G). (13)

Finally, after sampling transitions randomly and updating the parameters,
we obtain the probability distribution over the graph G as the output of MS-
GFlowNet after several iterations.

4 Experiments

4.1 Simulated Dataset Analysis

We generated three simulated datasets to evaluate MSFlowNet and other EC
learning methods. For simulated fMRI data, we followed prior work [16, 32] and
used the forward dynamic causal model (DCM) to generate time series data
with 5 brain regions (200 time points). For simulated EEG data, we used a
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Table 1. Performance comparison of different methods on simulation datasets

sim1 sim2 sim3
Prect Rec?T F1t SHD| Prect Rect F1t SHDJ| Prect Rect F1t SHD|
pwLINGAM [11] 0.50 0.81 0.59 2.00 0.30 0.29 0.289 5.62 0.36 0.56 0.42 5.22

Methods

Two-Step [24] 0.55 0.53 0.53 3.60 0.51 0.51 0.51 1.80 0.34 0.41 0.37 4.90
GFN [14] 0.73 0.74 0.70 1.00 0.78 0.54 0.63 2.90 0.77 0.51 0.61 2.55
DiffAN [23] 0.59 0.59 0.59 1.20 0.28 0.24 0.27 5.20 0.32 0.39 0.35 5.50
MetaRLEC [32]  0.33 0.25 0.28 3.00 0.32 0.28 0.31 5.25 0.26 0.29 0.27 5.83
MCAN [16] 0.33 0.54 0.39 3.00 1.00 0.25 0.40 5.00 1.00 0.35 0.51 3.00
SGFlowNet 0.76 0.74 0.73 0.90 0.78 0.54 0.63 2.90 0.73 0.64 0.63 3.50

MSGFlowNet 0.66 1.00 0.80 1.00 0.98 0.54 0.70 2.01 0.82 0.52 0.64 2.26

state-space model [28] to generate synchronized time series data with 3 channels
(20,000 time points). Each dataset contains data from 10 subjects. To assess
performance under sparse conditions, we set the network edges to 3, 5, and 7, and
uniformly assigned edge weights of 0.4 to test the methods’ ability to detect weak
connectivity. We employ four metrics: F1 score (F1), precision (Pre), recall (Rec),
and structural Hamming distance (SHD) [1,10] to evaluate the performance of
EC learning.

As shown in Fig.2, MSGFlowNet outperforms other EC learning methods,
including SGFlowNet (the MSGFlowNet using single-modal fMRI), across var-
ious datasets. In particular, MSGFlowNet performs well on the siml and sim2
datasets. As presented in Tablel, this underscores MSGFlowNet’s ability to ef-
fectively capture the intricate relationships in sparse and complex data, demon-
strating its robustness in learning EC under challenging conditions.
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Fig. 2. Average performance comparison of various methods on 3 simulated datasets.
The height of each bar represents the model’s performance, and the performance dif-
ferences relative to MSGFlowNet are indicated by connecting lines.

Additionally, MSGFlowNet outperforms MCAN (also employs fMRI and
EEG data) across all core evaluation metrics. These results validate MSGFlowNet’s
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effective integration of fMRI and EEG data, successfully addressing high-dimensional
sparsity and outperforming other multimodal methods.

4.2 Real Dataset Analysis (downstream classification task)

To further validate the effectiveness of MSDlowNet, we utilize simultaneous from
the OpenNeuro dataset [9] for downstream classification tasks, and compare its
performance against state-of-the-art methods.

The raw dataset is preprocessed using statistical parametric mapping (for
fMRI) and EEGLAB (for EEG) toolboxes, yielding 65 resting-state and 183
sleep-state simultaneous fMRI-EEG recordings. We employ 15 functionally crit-
ical brain regions as the ROIs based on the research of Enzo Tagliazucchi et al.
[27] and retain 30 EEG channels after excluding electrooculography (EOG) and
electrocardiography (ECG) artifacts.

We evaluated EC learning performance by classifying rest-state vs. sleep-
state brain activity using ground truth labels. All methods were tested with the
same polynomial kernel SVM classifier, and assessed using four metrics: accuracy,
F1-score, precision, and recall.

Fig. 3 shows MSGFlowNet obtains better classification results by effectively
combining fMRI’s spatial resolution and EEG’s temporal resolution to capture
EC characteristics. Our method outperforms traditional approaches [27] using
fewer regions and less data.

10 Accuracy s Precision mm Recall F1-score
0.8 0.760.76 0.760.76 0.760.760.760.76
n 71071 0.720.72 0.710.71
063

0.6 057
04
0.2

pWLINGAM Two-Step DiffAN MetaRLEC SGFlowNet MSGFlowNet

Fig. 3. Performance comparison of different methods on classification tasks

In addition to classification metrics, we also examine the neurobiological
interpretability of the learned EC networks.EC analyses revealed increased di-
rected links from the right supramarginal gyrus to the left precuneus during rest
compared to sleep. These regions are associated with attention, self-awareness,
and sensory integration.The enhanced connectivity during rest reflects height-
ened cognitive readiness and environmental monitoring, which diminish during
sleep as consciousness declines.
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5 Conclusion and Limitation

This study introduces MSGFlowNet, for learning EC from fMRI and EEG data.
The model combines an attention-guided encoder with a multi-head attention-
guided sparse Transformer to efficiently fuse multimodal information, addressing
the high-dimensional sparsity issue after data fusion. The experimental results
indicate that MSGFlowNet performs well on multiple brain analysis tasks. A lim-
itation of the current work is the computational efficiency for large-scale brain
network analysis. Future work will address this by integrating advanced neu-
roimaging modalities to enable deeper insights into brain information processing
mechanisms.
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