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Abstract. Accurate segmentation of Pelvic Radiation Injury (PRI) from
Magnetic Resonance Images (MRI) is crucial for more precise progno-
sis assessment and the development of personalized treatment plans.
However, automated segmentation remains challenging due to factors
such as complex organ morphologies and confusing context. To address
these challenges, we propose a novel Pattern Divide-and-Conquer Net-
work (PDC-Net) for PRI segmentation. The core idea is to use differ-
ent network modules to “divide” various local and global patterns and,
through flexible feature selection, to “conquer” the Regions of Interest
(ROI) during the decoding phase. Specifically, considering that our ROI
often manifests as strip-like or circular-like structures in MR slices, we
introduce a Multi-Direction Aggregation (MDA) module. This module
enhances the model’s ability to fit the shape of the organ by applying
strip convolutions in four distinct directions. Additionally, to mitigate
the challenge of confusing context, we propose a Memory-Guided Con-
text (MGC) module. This module explicitly maintains a memory param-
eter to track cross-image patterns at the dataset level, thereby enhancing
the distinction between global patterns associated with the positive and
negative classes. Finally, we design an Adaptive Fusion Decoder (AFD)
that dynamically selects features from different patterns based on the
Mixture-of-Experts (MoE) framework, ultimately generating the final
segmentation results. We evaluate our method on the first large-scale
pelvic radiation injury dataset, and the results demonstrate the superi-
ority of our PDC-Net over existing approaches.
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1 Introduction

In 2020, the global incidence of pelvic malignancies exceeded 4 million [12,6], rep-
resenting a significant and escalating threat to public health worldwide. Pelvic
radiotherapy [2] plays a crucial role in the tumor local control, systemic cure, and
palliation for patient survival, making it an indispensable therapeutic approach.
However, radiation exposure to normal tissues also brings damage to the pelvic
and abdominal organs. Pelvic Radiation Injury (PRI) may jeopardize the phys-
ical health and quality-of-life of patients. When the precise diagnosis of PRI
is difficult as for varied symptoms and nonspecific signs, Magnetic Resonance
Imaging (MRI) could provide details for repeated evaluation of pelvic structure
and surrounding tissues. For radiologists, PRI diagnosis is based on typical fea-
tures as diffuse edema or fibrosis within irradiated fields. Further quantitative
assessment requires segmentation and delineation of Regions of Interest (ROI),
a process that often costs huge labor and time. In addition, manual operations
are prone to errors of judgments, such as missed or redundant segmentation,
which limits the reliability. Therefore, an automated algorithm to identify PRI
regions from MRI could effectively assist clinicians in comprehensive diagnosis,
progression monitoring, and treatment planning.

Although medical image segmentation have made promising progress in re-
cent years [15,10,9], the design of methods to accurately identify PRI regions
from MRI remains an unsolved challenge. Directly applying existing general
methods does not yield optimal results, as PRI segmentation presents unique
challenges that require tailored solutions. Specifically, our goal is to identify the
rectal intrinsic muscle layer, anal sphincter muscle, puborectalis muscle, and full
bladder layer in MR slices, while determining whether these regions are injured.
Injuries are marked as positive pixels, while non-injured regions are defined as
negative. As illustrated in Fig. 1, this task is challenging for two key reasons.
First, unlike existing works where the ROIs typically consist of solid organs or
lesions, our ROIs involve hollow organs and muscles, which typically exhibit cir-
cular (e.g., bladder, rectum) or strip-like (e.g., muscles) shapes, making the use
of traditional square convolutions less effective for accurate feature matching.
Second, in the same slice, both positive and negative regions may be present
simultaneously, increasing the potential for class confusion and further increases
the difficulty of accurate segmentation.

To address the challenges outlined above, we propose a novel Pattern Divide-
and-Conquer Network (PDC-Net) in this paper. The network incorporates sev-
eral carefully designed components to accurately identify PRI regions. First, we
introduce a Multi-Direction Aggregation (MDA) module, which applies strip
convolutions in four directions. Compared to traditional square convolutions,
this approach better captures the shape of the target organ. Additionally, we
propose a Memory-Guided Context (MGC) module that maintains dataset-level
states for cross-image modeling. This enables the network to effectively distin-
guish complex semantics. Lastly, we present an Adaptive Fusion Decoder (AFD)
that dynamically selects features from different patterns, resulting in better seg-
mentation outputs. Overall, our contributions can be summarized as follows: (1)
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Fig. 1: Challenges in recognizing the radiation injuried regions: (a) circular-like
structure (b) strip-like structure (c) irregular shape (d) confusing context.

To the best of our knowledge, we are the first to design an AI-based method for
the automatic recognition of PRI from MRI, providing an important reference
for future research in this area. (2) To address challenges such as complex mor-
phology and confusing context, we have developed three novel modules: MDA,
MGC, and AFD, each carefully crafted to enhance segmentation accuracy. (3)
To validate the superiority of our proposed PDC-Net, we conducted experiments
on a large in-house dataset, demonstrating that our approach achieves state-of-
the-art performance.

2 Method

2.1 Multi-Direction Aggregation Module

In many current medical segmentation methods [10,18,9], convolutions typically
use standard square kernels to extract feature maps within square windows. This
approach is effective for segmenting solid organs or lesions with relatively regular
shapes. However, for injury segmentation, the primary focus is on hollow organs
and muscles, whose surfaces exhibit circular or strip-like shapes. In such cases,
existing square convolution operations may inadvertently capture more irrelevant
background information from neighboring pixels, leading to inefficiencies.

To address the aforementioned challenge, we design the Multi-Direction Ag-
gregation (MDA) module, which focuses on refining the features output by the
backbone to capture complex target shapes. While some existing methods [3]
also use strip convolutions for image segmentation, their approach only incorpo-
rates horizontal and vertical convolutions. This works well for targets with more
rectangular shapes, such as the bladder. However, for other targets, like muscles,
which appear diagonal in the slice, vertical or horizontal convolutions become
less efficient. To address this issue, we further extend the strip convolution to
include diagonal directions, enabling the model to better capture the irregular
shapes of various targets.

Specifically, given the encoder feature fi, we first use a 1×1 depthwise convo-
lution to adjust feature. Then we divide it into four parts along the channel, and
obtain fP1

i , fP2
i , fP3

i , fP4
i . The four parts are fed into strip convolutions with

horizontal (Conv→
9 ), vertical (Conv↓

9), left diagonal (Conv↘
9 ), and right diagonal

(Conv↗
9 ) directions and kernel size 9 to capture features of different patterns.
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Fig. 2: The overall framework of our proposed PDC-Net, which consists of four
main components: the PVT-v2-b2 [13] encoder, the MDA module (Sec 2.1), the
MGC module (Sec 2.2), and the AFD (Sec 2.3).

The captured features are concatenated along the channel to return to their orig-
inal shape to obtain the aggregated feature. In addition, for the input feature
fi, we also feed it into an auxiliary max pooling branch, to obain the detail-
enhanced feature. The aggregated feature and enhanced feature are multiply in
element-wise and sent to 1×1 convolution to obtain the final output of the MPA
module. The above operations can be represented as follows:

fPj
i = Conv1×9[x, y](Split(DWConv1×1(fi))), j ∈ {1, 2, 3, 4}, (1)

fmda = Conv1×1(ReLU(BN(Cat[fP1
i , fP2

i , fP3
i , fP4

i ]))⊗ MaxPool3×3(fi)) (2)

where [x, y] denotes the direction vector of the strip convolution, where [1, 0],
[0, 1], [1, 1], and [−1, 1] correspond to horizontal, vertical, left diagonal, and right
diagonal convolutions, respectively.

2.2 Memory-Guided Context Module

The MDA module described above is focus on capturing local patterns such as
organ shape. To get a more discriminating global context, such as weather a
region is positive or negative, further mining the very deep features is needed.
Existing practices usually focus on obtain a larger receptive field by stacking
different dilated convolution blocks or using self-attention operations [17]. How-
ever, these methods do not take into account the effects of class imbalance. Due
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to this severe imbalance, these methods are more susceptible to interference
from a large amount of background information, thereby reducing their ability
to distinguish between the semantics of negative and positive classes.

To better capture global semantics and reduce the interference of irrelevant
background, we propose a Memory-Guided Context (MGC) module. Memory
modules are often used in video segmentation [7] to capture the context of time
dimensions. This time dimension can also be viewed as the dataset dimension,
and we are inspired by this to use a memory to enable the network to selectively
and progressively accumulate knowledge related to the foreground class.

To be specific, given the input features fin ∈ RH×W×M , we use a sliding
window of size N to slice them without overlapping. In this way, we can obtain
both background patches and foreground patches, and enhance these foreground
patches in the next. We then apply max pooling and average pooling to each
patch fpatch ∈ RH

N ×W
N ×M separately to extract key features. Then, we use fully

connected (FC) layer on the max pooled and average pooled features for dimen-
sionality reduction, eliminating extraneous background slices:

f
′

patch = FC(Cat[Avg(fpatch),Max(fpatch)]), (3)

Additionally, we employ a dynamic weighting approach on the max pooled and
average pooled features to model the regions of interest:

fw
patch = f

′

patch ⊗Avg(fpatch)⊕ (1− f
′

patch)⊗Max(fpatch) (4)

Subsequently, we designed a memory bank M ∈ R1×1×S×K to accumulate
dataset-level target representations, where K denotes the capacity of the memory
bank. We multiply fw

patch ∈ R1×1×S with M to obtain fMB ∈ R1×1×S×K and
use the softmax function to generate a similarity coefficient matrix S ∈ R1×1×S ,
which measures the similarity between the input fw

patch and elements in M. We
multiply S with fMB to perform a weighted sum of the input features based on
their relevance, resulting in the organ-related weights f̂w

patch. Next, we use a FC
layer to upscale f̂w

patch to the dimension of fpatch, and perform an element-wise
multiplication with fpatch to obtain background-independent patches. Finally,
the slices are restored to the original feature map through the reverse sliding
window operation.

2.3 Adaptive Fusion Decoder

Many existing decoders in medical segmentation networks adhere to the U-
Net [10] style, progressively recovering information through a single bottom-up
pathway. However, this structure implicitly demands that the same decoder fea-
tures address multiple segmentation challenges simultaneously, such as unclear
boundaries or small targets. This constraint increases the learning difficulty of
the network. Recently, the Mixture-of-Experts (MoE) [5,14] architecture has
garnered great attention in the field of natural language processing. Its core con-
cept involves constructing a group of experts, each of which excels at processing
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distinct patterns. By dynamically adjusting the weights of these experts, the
architecture can flexibly handle various samples, thereby enhancing the overall
performance of the network. However, the vanilla MoE decoder lacks feature flow
between different stages, resulting in insufficient expert representation. There-
fore, we propose an Adaptive Fusion Decoder (AFD) based on the MoE architec-
ture, which encourages interaction among different expert features to enhance
performance in the PRI segmentation task.

Specifically, our decoder receives the features of previous phases as input.
We first divide each feature into four equal parts along the channel dimension.
Then, we use patch shuffle to select each piece of each feature and rejoin them
to obtain the mixed feature. This process effectively promotes the interaction of
features in different stages:

f i
ps = PS(f1

MDA, f
2
MDA, f

3
MDA, f

4
MDA), i ∈ {1, 2, 3, 4} , (5)

Next, we apply depthwise convolution with kernel sizes of (1×n, n×1) to achieve
expert customization, where n ∈ {3, 5, 7, 9}, to the features from these four
different stages to tailor the capabilities of different experts. We then concatenate
these expert features along the channel dimension and use a 1 × 1 depthwise
convolution to further eliminate redundant features, resulting in Fcat:

f̂ = DWConv1×1(Cat[DWConvn×1(DWConv1×n(f
i
ps)))]), n = {3, 5, 7, 9}, (6)

Subsequently, we introduce an adaptive expert feature fusion mechanism to gen-
erate the final output. Specifically, we apply adaptive pooling and a fully con-
nected layer to the concatenated features f̂ to reduce the dimensionality to the
number of experts. A sigmoid activation function is used to generate the weights
for the outputs of different experts. Finally, we obtain the prediction result of
each expert through a 1 × 1 depthwise convolution and perform element-wise
multiplication of the expert weights with the expert prediction results to achieve
the final output.

fout = DWConv1×1(f̂)⊗ σ(FC(AvgPool(f̂)) (7)

3 Experiments

3.1 Experimental Setup

Datasets. Due to the absence of a publicly available dataset for pelvic radia-
tion injury segmentation, we primarily conducted experiments using our in-house
dataset, which was obtained from the Sixth Affiliated Hospital, Sun Yat-sen Uni-
versity. This study was carried out following a protocol approved by the Ethics
Committee of the Sixth Affiliated Hospital, Sun Yat-sen University. The dataset
includes T2-weighted MRI sequences, where radiologists manually delineated
the rectal intrinsic muscle layer, anal sphincter muscle, puborectalis muscle, and
full bladder layer on each axial image slice. These four regions are annotated as
injured (positive) or not (negative). The final dataset comprises a total of 344
pelvic cases (8049 images), with 274 cases (6413 images) allocated for training
and the remaining 70 cases (1636 images) reserved for testing.
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Table 1: Quantitative comparison with other medical image segmentation meth-
ods. PRI-Neg and PRI-Pos represent the results for the negative and positive
classes, respectively. The best results are highlighted in bold.

Method
PRI-Neg PRI-Pos

DSC MCC ACC HD DSC MCC ACC HD
U-Net [10] 44.61 47.96 99.17 38.15 39.97 44.13 98.96 45.12
UNet++ [18] 44.60 48.11 99.17 39.16 39.16 43.29 98.98 45.23
TransUNet [1] 41.46 44.88 99.14 33.08 41.64 45.79 98.95 38.87
H2Former [4] 45.55 48.01 99.30 26.98 45.59 48.40 99.16 39.30
UNETR++ [11] 45.83 47.98 99.34 21.53 45.71 48.88 99.08 40.45
EMCAD [9] 46.27 48.38 99.32 21.90 46.30 49.52 99.12 34.58
Ours 48.79 50.31 99.38 21.01 49.12 50.98 99.26 33.14

Implementation Details. The framework is implemented using the PyTorch
library, with all experiments conducted on an NVIDIA 3090 GPU. We utilize
the CosineAnnealingLR schedule to adjust the learning rate, starting at 1×10−4

and gradually decreasing to a minimum of 1× 10−6. Training is performed over
100 epochs using the AdamW optimizer with a weight decay of 5 × 10−4. To
optimize the network, we employ both cross-entropy loss and Dice loss. Input
images are uniformly resized to 512× 512, with a batch size of 16.

Compared Methods. We compared our PDC-Net with the following methods:
U-Net [10], UNet++ [18], TransUNet [1], H2Former [4], UNETR++ [11], and
EMCAD [9]. For quantitative evaluation, we employed four metrics: the Dice
Similarity Coefficient (DSC), Matthews Correlation Coefficient (MCC), Accu-
racy (ACC), and Hausdorff Distance (HD) score. It is worth noting that, due to
the class imbalance between foreground and background, the DSC and MCC for
PRI segmentation tend to be relatively low, while the ACC is relatively high.

3.2 Result Analysis

Quantitative Comparison results are shown in Table 1. Our PDC-Net consis-
tently outperforms other methods. For example, in the negative class, PDC-Net
improves the DSC and MCC by 4.18% and 2.35%, respectively, compared to the
U-Net baseline. When compared to the most competitive EMCAD, DSC and
MCC are improved by 2.52% and 1.93%, respectively. Additionally, compared to
the 3D method UNETR++, our method achieves improvements of 2.96% and
2.33%. These experimental results demonstrate that our method is more suitable
for injury segmentation and outperforms existing approaches.
Qualitative Comparison results are shown in Fig. 3. In the first row of im-
ages, both positive targets (e.g., muscles) and negative targets (e.g., bladder)
are present simultaneously. Our method is able to more accurately distinguish
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Image GT TransUNet H2Former UNETR++ EMCAD Ours

Fig. 3: PRI segmentation results of different methods, where red pixels represent
negative areas and green pixels represent positive areas.

Table 2: Ablation experiments on the proposed modules.

(a) Results about MDA.

Variant Neg Pos

PConv 46.18 47.39
Dual 47.23 48.01
MDA 48.79 49.12

(b) Results about MGC.

Variant Neg Pos

EFA [17] 47.51 47.68
MSR [16] 46.93 47.27
MGC 48.79 49.12

(c) Results about AFD.

Variant Neg Pos

U-shape [10] 45.91 44.12
MoE [5,8] 47.33 47.58
AFD 48.79 49.12

between positive and negative targets without causing class confusion. In the
second row, compared to other methods, our approach produces more complete
and continuous predictions without misidentifying irrelevant regions.

3.3 Ablation Study

To validate the effectiveness of each component of PDC-Net, we conducted ex-
tensive ablation experiments, and the DSC results are shown in Table 2.
Multi-Direction Aggregation Module. We considered two variants of the
MDA module: one that only uses point convolutions (PConv) to align channels
and one that only uses vertical and horizontal patterns (Dual), without diagonal
strip convolutions. As shown in Table 2a, our MDA shows an improvement of
2.61% on the neg class compared to the "PConv" mode.
Memory-Guided Context Module. We considered using two other feature
enhancement modules: Embedding-Free Attention (EFA) [17] and Multi-Scale
Representation (MSR) [16]. As shown in Table 2b, our AFD shows an improve-
ment of 1.28% on the neg class compared to EFA.
Adaptive Fusion Decoder. We considered using two other decoder styles:
the U-shape decoder [10] and the vanilla MoE decoder [5,8] (without patch
shuffling, expert customization, etc.). As shown in Table 2c, our AFD shows
an improvement of 2.88% on the neg class compared to the U-shape decoder.



Pelvic Radiation Injury Segmentation 9

4 Conclusion

In this paper, we propose the first method for pelvic radiation injury segmen-
tation. The proposed PDC-Net carefully addresses several challenges, such as
complex organ morphologies and confusing context. Extensive experiments on a
large in-house dataset show that our framework achieves state-of-the-art perfor-
mance.
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