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Abstract. Recent advances in Masked Autoregressive (MAR) models
highlight their ability to preserve fine-grained details through contin-
uous vector representations, making them highly suitable for tasks re-
quiring precise pixel-level delineation. Motivated by these strengths, we
introduce MARSeg, a novel segmentation framework tailored for med-
ical images. Our method first pre-trains a MAR model on large-scale
CT scans, capturing both global structures and local details without
relying on vector quantization. We then propose a Generative Parallel
Adaptive Feature Fusion (GPAF) module that effectively unifies spatial
and channel-wise attention, thereby combining latent features from the
pre-trained MAE encoder and decoder. This approach preserves essen-
tial boundary information while enhancing the robustness of organ and
tumor segmentation. Experimental results on multiple CT datasets from
the Medical Segmentation Decathlon (MSD) demonstrate that MARSeg
outperforms existing state-of-the-art methods in terms of Dice Similarity
Coefficient (DSC) and Intersection over Union (IoU), confirming its ef-
ficacy in handling complex anatomical and pathological variations. The
code is available at https://github.com/Ewha-AI/MARSeg.
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1 Introduction

Accurate segmentation of cancerous lesions and related anatomical structures
from CT images is paramount for reliable diagnosis, treatment planning, and
disease monitoring [16,17,6]. Such segmentation not only enables precise target-
ing in radiotherapy and surgical planning but also facilitates automated detection
methods and reduces observer variability. However, the inherent heterogeneity of
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tumors, coupled with substantial variability in organ shapes, sizes, and imaging
conditions, makes it challenging to achieve robust and generalizable performance
[3,1,22].

Traditional deep learning methods, often based on convolutional neural net-
works (CNNs) or transformers, rely on large-scale annotated datasets and tend
to struggle under data-scarce or complex imaging scenarios [15,19]. While CNN-
based models excel at capturing local features, their limited receptive fields
can hinder modeling of long-range dependencies. Transformer-based approaches
leverage global self-attention but may lose fine-grained details that are crucial
for precisely delineating complex organ boundaries. Consequently, even hybrid
CNN–transformer strategies face difficulties in balancing broad contextual infor-
mation with local detail.

Meanwhile, recent progress in generative models such as Generative Ad-
versarial Networks (GANs) [7] and Variational Autoencoders (VAEs) [12] has
showcased the capacity to learn rich, high-dimensional representations of med-
ical images [11,23]. These models, often pre-trained on large datasets, capture
complex anatomical features and spatial relationships, offering a promising re-
source for downstream tasks. Of particular relevance is the Masked Autoregres-
sive (MAR) model [13], which combines a Masked Autoencoder (MAE) [8] with
diffusion techniques. MAR has demonstrated exceptional capability in preserv-
ing high-resolution details, making it an attractive candidate for medical image
segmentation.

Motivated by these developments, we introduce MARSeg, a novel multi-
stage segmentation framework that leverages the powerful representational ca-
pacity of MAR. Specifically, we first perform large-scale pre-training on CT data
to learn robust global and local features. We then propose a Generative Parallel
Adaptive Feature Fusion (GPAF) module that integrates spatial and channel
attention in parallel, effectively merging global context with fine-grained local
details. During the segmentation stage, a portion of MAE component of the
MAR model is frozen, while the image tokenizer, Adaptive Feature Fusion mod-
ule, and segmentation head are fine-tuned. This two-stage strategy overcomes
the inherent limitations of conventional approaches, leading to improved perfor-
mance in challenging segmentation scenarios.

Concretely, our contributions can be summarized as follows:

– Multi-Stage Framework: We devise a two-step approach that first learns
a robust and semantically rich representation via MAR pre-training on CT
data, followed by a segmentation-specific fine-tuning step.

– Generative Parallel Adaptive Feature Fusion Module: We introduce
a fusion module that combines parallel spatial and channel attention mecha-
nisms, enabling effective integration of global and local information for pre-
cise boundary delineation.

To assess MARSeg’s effectiveness, we conduct extensive experiments on CT
datasets from the Medical Segmentation Decathlon (MSD) [2], encompassing
four different organs and their respective tumors. Experimental results show that
MARSeg not only balances global context and fine structural details but also
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Fig. 1. Overall architecture of MARSeg. A 2D CT slice is first processed by the KL-16
encoder (tokenizer) and then passed to the Masked Autoregressive (MAR) model. The
fused features from encoder-decoder outputs are refined using the Generative Parallel
Adaptive Feature Fusion (GPAF) module, which applies spatial and channel attention.
Finally, the resulting feature maps are fed into a segmentation head to produce the
final mask.

achieves superior segmentation performance and domain robustness compared
to existing state-of-the-art methods.

2 Method

MARSeg is designed as a multi-stage framework. In the first stage, we pre-train
a MAR on large-scale CT images (Section 2.1). In the second stage, shown in
Fig. 1, we fuse the pre-trained encoder and decoder features via our proposed
module and fine-tune them for the final segmentation task (Sections 2.2 and
2.3).

2.1 MAR Pre-training

In the pre-training stage, a Masked Autoencoder (MAE) is integrated with a
continuous vector-based diffusion process to form a generative model, referred
to as MAR. Specifically, we employ the KL-16 tokenizer from the LDM frame-
work [18], which is regularized by Kullback–Leibler divergence rather than tra-
ditional vector quantization [13]. This design choice effectively preserves both
global anatomical structures and fine-grained local details while minimizing in-
formation loss.

The pre-training pipeline proceeds as follows:

1. Latent Encoding. Each CT slice is encoded into a latent representation z
via the KL-16 tokenizer. This pre-trained tokenizer, kept fixed during pre-
training, captures key tissue-related features of the input data.
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2. Masked Autoencoding. A random subset of latent patches in z is masked,
forcing the MAE encoder to learn a global context from incomplete data. The
MAE decoder then reconstructs the missing patches, guided by the global
cues from the encoder.

3. Diffusion Refinement. A diffusion network refines the reconstructed out-
put by iteratively denoising it, enhancing structural fidelity and detail preser-
vation. This step consolidates local fine-grained information within the broader
anatomical context.

By training on a combination of pancreas and liver CT images from the
Medical Segmentation Decathlon (MSD) dataset, the MAR model learns robust
representations that capture both high-level semantic information and nuanced
boundary details. These pre-trained weights serve as strong initialization for
the subsequent segmentation stage, where only the KL-16 tokenizer and MAE
decoder are fine-tuned, while the MAE encoder is kept frozen.

2.2 Generative Parallel Adaptive Feature Fusion Module

To effectively leverage the semantic information learned by the MAR model
for segmentation, we propose a Generative Parallel Adaptive Feature Fusion
(GPAF) module. Figure 1 (in Section 2) shows an overview of how the fused
encoder-decoder features pass through this module before reaching the segmen-
tation head.
Feature Preparation. Let Oei and Odi denote the MAE encoder and decoder
outputs at layer i, respectively. Initially, each has shape

Oei , Odi ∈ RB×Ci×Li , (1)

where B is the batch size, Ci is the number of channels at layer i, and Li is the
patch-sequence length. We reshape each tensor from a 1D patch sequence into a
2D spatial grid:

Õei , Õdi
∈ RB×Ci×Hi×Wi , where Hi ×Wi = Li. (2)

We then concatenate these reshaped tensors along the channel dimension and
apply a 1× 1 convolutional projection (denoted as Proj ) to unify their channel
sizes:

Oc,i = Proj
(
Concat[Õei , Õdi

]
)

∈ RB×di×Hi×Wi , (3)

where di is the new channel dimension after concatenation and projection.
Parallel Spatial and Channel Attention. Next, Oc,i is fed into two parallel
attention branches: spatial attention (SA) and channel attention (CA).

Spatial Attention (SA). We highlight important spatial regions by combining av-
erage and max pooling along the channel dimension, followed by a convolutional
layer with a sigmoid activation:

OSA,i = Oc,i ⊙ σ
(
Convk×k

[
Mean(Oc,i), Max(Oc,i)

])
, (4)

where ⊙ denotes element-wise multiplication, and σ is the sigmoid function. This
mechanism assigns higher weights to spatial positions deemed more relevant.
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Channel Attention (CA). Simultaneously, we evaluate the importance of each
channel by aggregating spatial information (e.g., using average and max pooling
in the spatial domain):

OCA,i = Oc,i ⊙ σ
(
W2

(
ReLU

(
W1(AvgPool(Oc,i) + MaxPool(Oc,i))

)))
, (5)

where W1 and W2 are learnable parameters. The channel-wise weights reflect
each feature map’s relative contribution to the overall representation.

Finally, the outputs of SA and CA are concatenated along the channel axis,
and another 1× 1 projection is applied:

OGPAF,i = Proj
(
Concat[OSA,i, OCA,i]

)
. (6)

Thus, OGPAF,i ∈ RB×d′
i×Hi×Wi merges both global and local cues while adap-

tively refining feature emphasis across spatial and channel dimensions.

2.3 Fine-Tuning Stage for Segmentation

After pre-training the MAR model, we pass the input image through the KL-16
encoder to obtain latent representations, which are then fed into the frozen MAE
encoder and the trainable MAE decoder. In this phase, the KL-16 tokenizer and
the MAE decoder are fine-tuned, whereas the MAE encoder remains fixed. This
strategy ensures that the highly capable generative encoder retains its global
context while adapting the decoder and tokenizer to the specific segmentation
domain.

Feature Extraction. We extract the output features from the final four MAE
encoder and decoder layers, denoted by

{Õei | i ∈ {9, 10, 11, 12}}, {Õdi
| i ∈ {9, 10, 11, 12}}.

Each pair of encoder-decoder features (Õei , Õdi) is fused via the proposed GPAF
module (Section 2.2), forming a set of multi-scale features that encapsulate both
high-level and fine-grained information.

FPN-based Segmentation Head. To convert these fused features into segmenta-
tion masks, we employ a simplified Feature Pyramid Network (FPN) [14]. Each
fused feature map OGPAF,i is projected to a fixed channel size via a 1× 1 lateral
convolution and these projected maps are subsequently merged via element-wise
summation with the fused feature maps in the chosen layers in top-down manner.
Then we use consecutive 3×3 and 1×1 convolutions to produce the final segmen-
tation logits. This design preserves both low-level cues and high-level semantic
context, enabling MARSeg to achieve robust and precise boundary delineation
under diverse anatomical variations.
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3 Experiments

3.1 Experimental Setup

Dataset and Metric. For model training and validation, we utilize the publicly
available dataset provided by the Medical Segmentation Decathlon (MSD) [2],
a biomedical image analysis challenge designed to assess the generalizability of
segmentation algorithms. Among its tasks, the MSD Pancreas dataset comprises
420 cases with a total of 26,719 portal-venous phase CT slices of patients who
underwent surgical resection for pancreatic masses. To further expand our eval-
uation, we incorporate three additional MSD datasets:

– MSD Liver: Consisting of 201 CT scans (58,641 slices), this dataset requires
segmenting both the liver and any tumors therein.

– MSD Colon: Containing 190 CT scans (13,486 slices) focused on primary
colon cancer, it presents a challenge due to the heterogeneous appearance of
lesions and surrounding structures.

– MSD Spleen: Comprising 61 CT scans (3,650 slices) from patients under-
going chemotherapy for liver metastases, it varies significantly in splenic size
and shape.

Leveraging these diverse datasets enables a comprehensive evaluation of our
model’s segmentation capabilities under varied anatomical and pathological sce-
narios. All input images are resized to 256 × 256, and we split each dataset by
patient in an 8:1:1 ratio for training, validation, and testing. We report perfor-
mance using two widely adopted metrics in medical image segmentation: the
Dice Similarity Coefficient (DSC) and the Intersection over Union (IoU).

Implementation Details. Our experiments are implemented in PyTorch and
run on two NVIDIA RTX 6000 Ada Generation GPUs. We employ a combined
loss function (Dice loss : cross-entropy loss = 1:2) and use the AdamW opti-
mizer with a learning rate of 2.5 × 10−5. Each model is trained for 200 epochs
with a batch size of 32, requiring approximately one day of computation on the
aforementioned GPUs for liver datasets.

For data preprocessing, we apply organ-specific clipping to remove irrelevant
regions based on organ characteristics, followed by intensity normalization. The
3D volumes are then sliced into 2D images to form the final training dataset. This
approach ensures that domain-specific information is retained while reducing
input size and complexity.

3.2 Results and Analysis

We evaluate the performance of our proposed method, MARSeg, on four MSD
datasets and compare it with various state-of-the-art segmentation methods. As
shown in Table 1, MARSeg achieves the highest DSC and IoU scores, surpassing
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Table 1. Comparison with state-of-the-art medical image segmentation methods on
four MSD tasks. Best values are marked in red-bold, and second-best values are
marked in blue-underline.

Methods Panc Tumor Liver Tumor Colon Cancer Spleen
DSC IoU DSC IoU DSC IoU DSC IoU

SwinUNet [4] 48.27 31.81 69.16 52.85 41.28 26.00 91.00 83.49
TransUNet [5] 33.32 19.99 75.77 61.00 42.42 26.92 92.74 86.46
MTUNet [21] 38.01 23.46 69.87 53.69 19.60 10.86 94.66 89.86
MISSFormer [9] 35.98 21.94 64.46 47.56 10.83 5.73 93.98 88.65
nnUNet [10] 38.74 24.02 67.35 50.77 42.53 27.01 95.84 92.01
CFATransUnet [20] 35.25 21.39 65.55 48.75 12.86 6.87 93.20 87.27

MARSeg (Ours) 49.45 32.84 74.90 59.87 51.70 34.86 96.08 92.56

Fig. 2. Qualitative comparison of segmentation performance on sample CT slices.
Columns (from left to right) show the ground truth (GT), MARSeg (ours), Tran-
sUNet, SwinUNet, and nnUNet. Red rectangles denote regions of interest, which are
magnified in the lower-right inset.

other approaches in pancreatic tumor, colon cancer and spleen (organ) segmenta-
tion tasks. Although pancreatic tumor detection remains challenging, our model
achieves the highest performance with a Dice score of 49.45%. In the case of
liver tumor segmentation, our method performs comparably to state-of-the-art
approaches. In the case of colon cancer—where most models struggle with seg-
mentation—our model achieves a Dice score that is 21.57% higher and an IoU
that is 29.06% higher compared to the second-best approach, nnUNet. Further-
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more, for relatively small organs such as the spleen, our model achieves superior
performance compared to other methods, attaining a Dice score of 96.08% and
an IoU of 92.56%.

Figure 2 provides a visual comparison of segmentation results on the MSD
dataset. MARSeg demonstrates superior boundary delineation and more accu-
rate lesion segmentation, highlighting its ability to capture both fine-grained and
global contextual features effectively.

Ablation Study. To compare the performance of the proposed GPAF module
with conventional feature fusion methods, we conduct ablation studies on the
MSD Pancreas and Spleen dataset. The results in Table 2 demonstrated that our
GPAF module achieves superior performance over other feature fusion methods.
Furthermore, we evaluate the effect of the selected feature layers from the gener-
ative model (MAR). Table 3 presents utilizing the last four layers of the encoder
and decoder yields better performance. For the layers selection experiment, we
exclusively employed the Cross-Entropy loss function.

Table 2. Ablation study for differ-
ent feature fusion methods.

Feature Fusion Spleen Panc Tumor

DSC IoU DSC IoU

w/o Fusion 95.39 91.19 37.75 23.27
Concat 95.67 91.71 46.36 30.17
Cross Attention 95.25 90.93 45.61 29.55
GPAF (Ours) 96.16 92.62 48.81 32.28

Table 3. Ablation study for dif-
ferent fusion layers with proposed
module.

Layers Spleen Panc Tumor

DSC IoU DSC IoU

[3,6,9,12] 95.97 92.26 38.92 24.16
[9,10,11,12] 96.17 92.62 40.93 25.73

4 Conclusion

In this work, we proposed MARSeg, a segmentation framework that leverages
the powerful representational capabilities of a Masked Autoregressive (MAR)
generative model. By pre-training on large-scale CT data, our approach captures
both global structural patterns and fine-grained local details, addressing common
challenges in medical image segmentation. We further introduced a Generative
Parallel Adaptive Feature Fusion module that unifies encoder-decoder features
through parallel spatial and channel attention, enhancing boundary delineation
for organs and tumors.

Comprehensive experiments on various MSD datasets confirm that MARSeg
consistently outperforms state-of-the-art methods, achieving higher Dice and
IoU scores. These results indicate that our generative pre-training strategy and
proposed fusion module can effectively integrate semantic richness with local-
ized anatomical precision. Future directions include extending MARSeg to 3D
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volumetric segmentation, investigating robust multi-institutional scenarios, and
exploring semi-supervised or low-data regimes to further capitalize on the MAR
model’s generative strengths. Our MARSeg enhances consistency in diagnosis,
treatment planning, and disease monitoring through accurate segmentation, and
alleviate physician’s workload.
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