
A Model Order-Free Method for Stable States Extraction 

in Dynamic Functional Connectivity 

Songke Fang1, Vince D. Calhoun 2, Godfrey Pearlson3, Peter Kochunov4, Theo G.M. 

van Erp5 and Yuhui Du1* 

1 School of Computer and Information Technology, Shanxi University, Taiyuan, China 
2 Tri-Institutional Center for Translational Research in Neuroimaging and Data Science, Geor-

gia State University, Georgia Institute of Technology, Emory University, Atlanta, GA, USA 
3 Departments of Psychiatry and Neurobiology, Yale University, New Haven, CT, USA 

4 Maryland Psychiatric Research Center and Department of Psychiatry, University of Maryland, 

School of Medicine, Baltimore, MD, USA 
5 Department of Psychiatry and Human Behavior, School of Medicine, University of California, 

Irvine, CA, USA 
duyuhui@sxu.edu.cn 

Abstract. Dynamic functional connectivity (dFC) analysis has revealed that 

functional connectivity fluctuates over short timescales, reflecting the intrinsic 

transitions of brain among multiple states. However, dFC data typically exhibit 

the characteristics of high dimensionality and noise, making it difficult to extract 

stable and accurate states. Furthermore, accurately identifying model order (i.e., 

number of states) is challenging due to lack of prior knowledge. To address the 

above issues, we propose a model order-free method for extracting stable states. 

Our method can simultaneously capture multi-scale state information and im-

prove the stability of the state. Furthermore, our method estimates the number of 

states adaptively based on data-driven methods. Based on synthetic data, we eval-

uated the effectiveness of our method. The results showed that, compared to tra-

ditional methods, our method not only accurately estimated the number of states 

but also extracted states with greater robustness and precision. Additionally, we 

evaluated the effectiveness and stability of the method using fMRI data from 602 

healthy controls and 519 schizophrenia patients. Results demonstrated that our 

method exhibited significant consistency among the states extracted by multiple 

runs. Moreover, we identified reliable biomarkers for schizophrenia. In conclu-

sion, we propose a novel state extraction method that does not rely on predefined 

state numbers, while accurately and stably identifying states. 

Keywords: Resting-state functional magnetic resonance imaging, Dynamic 

functional connectivity, Clustering. 

1 Introduction 

Resting-state functional magnetic resonance imaging (rs-fMRI) provides a way to 

quantify the functional interaction of the human brain. Functional connectivity (FC) 

has been extensively used to study how brain regions efficiently collaborate. Recent 
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evidence suggests that FC exhibits rapid, non-stationary fluctuations, indicating the in-

trinsic transitions of brain among multiple metastable states [1]. These dynamic 

changes in FC are critical for understanding the neural mechanisms underlying mental 

disorders and for identifying potential biomarkers [2].  

To characterize the dynamic changes in the brain, the sliding window method is 

widely used in the study of dynamic functional connectivity (dFC). Since FC patterns 

across different subjects do not have a direct correspondence, researchers typically use 

clustering to unveil the underlying connectivity states [3]. However, dFC data typically 

exhibit the characteristics of high dimensionality and high noise, so it is difficult to 

extract stable and accurate states by traditional methods. Furthermore, in the absence 

of prior knowledge, determining the model orders (i.e., number of states) that describe 

the relationships between dFC patterns is also a challenge. A lower model order often 

struggles to capture the temporal changes in the brain, while a higher model order is 

more susceptible to noise. Although some studies attempt to pre-determine model order 

using the elbow criterion, the complex structure of dFC data lacks a clear elbow or 

presents multiple elbows [4]. Additionally, traditional methods typically fix single 

model order for state extraction, but the states obtained under different model orders 

may capture distinct underlying information. 

To address the above issues, our study proposes a model order-free method for the 

extraction of stable states across multiple model orders. To the best of our knowledge, 

this is the first attempt to extract stable states across different model orders. The main 

contributions of this paper are summarized as follows:  

1. A model order-free state extraction method is introduced which not only retains 

the multi-scale state information but also significantly improves the stability of 

the states. 

2. A novel inter-cluster similarity graph is derived, which maps the dFC data into 

a multi-scale similarity graph composed of stable state clusters, making the clus-

tering structure more obvious. 

3. Experiments on synthetic datasets with varying characteristics demonstrate that 
the proposed method effectively estimates the number of states and outperforms 

existing methods in state extraction accuracy. 

4. Experiments on fMRI dataset with 602 healthy controls (HCs) and 519 schizo-

phrenia patients (SZs) demonstrate that proposed method can extract stable 

states. Furthermore, reliable biomarkers for schizophrenia are identified in the 

subcortical network. 

2 Methods 

The pipeline of the method proposed in this paper is shown in Fig. 1. In order to 

preserve the multi-scale state information and improve state stability, we propose an 

index to measure the stability of the basic states in order to achieve the extraction of 

stable states across scales. Subsequently, we introduce a novel inter-cluster similarity 

graph, which reflects the multi-scale correlation of stable states, making the clustering 

structure more obvious. For the obtained inter-cluster similarity graph, we merge 
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similar stable states into meta-states through community detection, and assign each 

window to the meta-state by voting. 

 

Fig. 1. The pipeline of the proposed method. (A) Identification of stable clusters across model 

orders (B) Measuring inter-cluster similarity between stable clusters to extract stable meta-states. 

2.1 Identification of Stable States across Model Orders 

In order to extract stable states at multiple model orders, we generate basic states 

under different model orders and evaluate the stability of the basic states (Fig. 1(A)). 

Specifically, let 𝑋 = {𝑥𝑖}𝑖=1
𝑁 , 𝑥𝑖 ∈ ℝ𝑑  denote the dFC windows of all subjects, where 

𝑥𝑖 represents the 𝑖-th window, and 𝑑 represents the upper triangular elements extract 

from each dFC window matrix. In the model orders range [𝑎, 𝑏], the K-means is exe-

cuted 𝑚 times independently with random initialization, yielding an ensemble of clus-

tering solutions Π = {𝜋1, ⋯ , 𝜋𝑚}. Each 𝜋𝑘 ∈ Π consists of a set of base clusters (i.e., 

states) 𝜋𝑘 = {𝑐𝑘
1, ⋯ , 𝑐𝑘

|𝜋𝑘|
}, with each window 𝑥𝑖  assigned a unique cluster label in 

𝜋𝑘(𝑥𝑖). 

Since different initializations and model orders can lead to significantly varied 

clusters [5], therefore we extract a stable subset of base clusters. Let 𝐵𝐶 =

{𝑐1
1, ⋯ , 𝑐1

|𝜋1|
, ⋯ , 𝑐𝑘

1, ⋯ , 𝑐𝑘

|𝜋𝑘|
} be the set of all base clusters. Given a subset 𝑆𝐶 ⊆ 𝐵𝐶, 

any clusters of 𝐵𝐶 that meets the predefine stability threshold 𝜎 will be added to the 

𝑆𝐶 set, as show below: 

𝑆𝐶 = {
         𝑐𝑘

𝑙 ∈ 𝑆𝐶,        𝑖𝑓 𝐴𝑆(𝑐𝑘
𝑙 ) > 𝜎

𝑐𝑘
𝑙 ∉ 𝑆𝐶,       𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

,    𝑘 ∈ [1, 𝑚], 𝑙 ∈ [1, |𝜋𝑘|]      (1) 

where 𝐴𝑆(𝑐𝑘
𝑙 ) is the stability of the 𝑙-th cluster in the 𝑘-th clustering solution. We use 

the normalized mutual information (NMI) measure to calculate the stability of base 

clusters. For a given cluster 𝑐𝑘
𝑙  in the 𝜋𝑘, we transform 𝜋𝑘 into 𝜋𝛼 =  {𝑐𝑘

𝑙 , 𝑐𝑘
𝑙̂ } with two 

clusters 𝑐𝑘
𝑙  and 𝑐𝑘

𝑙̂ , where 𝑐𝑘
𝑙̂  contains all windows that do not in 𝑐𝑘

𝑙 . Also, let 𝜋𝛽 =

 {𝑐𝑢
𝑙 , 𝑐𝑢

𝑙̂ } be another partition 𝜋𝑢 with two clusters 𝑐𝑢
𝑙  and 𝑐𝑢

𝑙̂  where 𝑐𝑢
𝑙  contains all ‘pos-

itive clusters’, if more than half of its windows overlap with 𝑐𝑘
𝑙 . Accordingly, the sta-

bility of 𝑐𝑘
𝑙  in 𝜋𝛽 can be considered as NMI( 𝜋𝛼, 𝜋𝛽 ) and calculate as shown SC(𝑐𝑘

𝑙 , 𝜋𝛽) 
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= NMI( 𝜋𝛼, 𝜋𝛽 ) For each 𝑐𝑘
𝑙 ∈ 𝐵𝐶, there is a stability metric in partition 𝜋𝑘, thus the 

average stability is calculated as follows: 

𝐴𝑆(𝑐𝑘
𝑙 ) =

1

𝑚
∑ 𝑆𝐶(𝑐𝑘

𝑙 , 𝜋𝑘)𝑚
𝑘=1                                             (2) 

where 𝑚 represents the number of partitions. The resulting stable states capture multi-

scale dynamic information, serving as the basis for propagating inter-cluster similari-

ties. 

2.2 Propagation of Inter-cluster Similarity between Stable Clusters to 

Extract Stable Meta-States 

As shown in Fig. 1(B), we propagate inter-cluster similarities through random 

walk to extract stable meta-states. We first construct an initial similarity graph G =
〈𝑉, 𝐸, 𝑊〉, where each node in 𝑉 represents a stable cluster and the edge weight 𝑊 be-

tween two stable clusters 𝐶𝑖 , C𝑗  is computed using the Jaccard coefficient 𝜔𝑖𝑗 =

Jaccard(𝐶𝑖 , 𝐶𝑗). In order to integrate multi-scale information to construct inter-cluster 

similarity, we refine the initial graph using a multi-scale random walk [6]. Specifically, 

the transition probability matrix 𝑃 = {𝑝𝑖𝑗} is calculated as follows: 

𝑝𝑖𝑗 = {

𝜔𝑖𝑗

∑ 𝜔𝑖𝜇
𝑆
𝜇=1,𝜇≠𝑖

， 𝑖𝑓 𝑖 ≠ 𝑗

0，         𝑖𝑓 𝑖 = 𝑗
                                             (3) 

where, 𝑝𝑖𝑗  is the probability that a random walker transits from nodes 𝐶𝑖 to C𝑗 in one 

step. Base on the one-step transition probability matrix, the transition probability matrix 

𝑃(𝑡) for a random walk of t steps can be obtained, that is: 

𝑃(𝑡) = {
𝑃，                𝑖𝑓 𝑡 = 1

𝑃(𝑡−1) ∗ 𝑃， 𝑖𝑓 𝑡 > 1
                                             (4) 

in 𝑃(𝑡), 𝑝𝑖:
𝑡  denote the probability distribution of stable cluster C𝑖 transitioning to every 

other stable cluster after t steps of the random walk. Different step lengths can reflect 

graph structural information at different scales [7], so we refine inter-cluster similarity 

via random walks with varying scales, where the aggregated transition probability from 

node C𝑖 and reaching every other node in one to t steps is represented as: PT𝑖:
(1:𝑡)

=
∑ 𝑝𝑖:

𝑢𝑡
𝑢=1 . We then compute similarity measure between nodes C𝑖 and C𝑗: 

𝑧𝑖𝑗 =
<PT𝑖:

(1:𝑡)
，PT𝑗:

(1:𝑡)
>

√<PT
𝑖:
(1:𝑡)

，PT
𝑖:
(1:𝑡)

> ∗ <PT
𝑗:
(1:𝑡)

，PT
𝑗:
(1:𝑡)

>
, 𝑧𝑖𝑗 ∈ [0,1]                     (5) 

𝑧𝑖𝑗  is used as the weight in a new multi-scale weighted graph G̃ = {Ṽ, Ẽ, W̃}, where 

W̃ = 𝑧𝑖𝑗 effectively captures the potential relationships among stable clusters at multi-

ple scales. Here, the constructed multi-scale weighted graph adequately measures the 

potential relationships between stable clusters. 

To obtain reliable meta-states, we apply the Louvain algorithm to perform com-

munity detection on G̃, selecting the community structure that maximizes modularity 

as the meta-states: MC = {MC1, MC2, ⋯ , MC𝐾}, where 𝐾 is the number of meta-states. 

Windows are assigned to meta-states via voting [8]. For a given window 𝑥𝑖 and meta-

state MC𝑗, the voting score is defined as: 

Score(𝑥𝑖 , MC𝑗) =
1

|MC𝑗|
∑ 𝛿(𝑥𝑖 ∈ 𝐶ℎ)𝐶ℎ∈MC𝑗

                            (6) 

where 𝛿(𝑥𝑖 ∈ 𝐶ℎ) equals 1 if 𝑥𝑖 is contained in 𝐶ℎ and 0 otherwise.  
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MetaCls(𝑥𝑖) = argmax𝑀𝐶𝑗∈𝑀𝐶Score(𝑥𝑖 , MC𝑗)                      (7) 

Here, each window 𝑥𝑖 can be assigned to the meta-states with the highest vote count. 

Finally, the group-level functional connectivity state is formed by calculating the cen-

troid of all windows in each meta-stable. 

3 Materials and Experiments 

3.1 Synthetic Datasets 

For the synthetic datasets, we used the SimTB [9] to generate time courses (TCs), 

followed by a sliding window to estimate the dFC [10]. We generated synthetic data 

with different parameter combinations (Table 1) to evaluate the performance of differ-

ent methods under different noise levels, different numbers of nodes and different num-

bers of states. Low and high noise were generated by varying the probability and am-

plitude of unique events in the underlying neural TCs, and the amplitude of Gaussian 

noise added to the TCs. We generated 50 subjects for each synthetic dataset, with each 

subject comprising 270 time points. For each subject, dFC was estimated using a ta-

pered window, followed by extraction of upper triangular elements from each dFC ma-

trix as feature vectors which were then concatenated along the window direction. 

Table 1. Descriptions of synthetic datasets. 

Datasets Noise levels Number of nodes Number of states 

Synthetic dataset 1 Low noise 25 5 

Synthetic dataset 2 High noise 25 3 

Synthetic dataset 3 High noise 25 5 

Synthetic dataset 4 High noise 50 5 

3.2 fMRI datasets and Preprocessing 

The fMRI data included 602 HCs and 519 SZs from four datasets: BSNIP [11], 

COBRE [12], FBIRN [13], and MPRC [14]. The details of data preprocessing were 

described in [15]. Subsequently, for each subject, we extracted TCs from 116 regions 

of interest using the AAL template. These TCs were used to compute dFC via a tapered 

sliding window (window length = 20 TR, step size = 1 TR). Based on previous literature 

[16, 17], we mapped AAL to nine brain networks. For each window, we extracted upper 

triangular elements as an FC feature vector (𝑑 = 6670) and concatenated along the 

window direction. For the dFC data after concatenation, we used PCA to reduce the 

feature vector dimensionality to 1000 for improved computational efficiency. 

3.3 Experiment and Evaluation 

In the synthetic datasets experiments, based on multiple synthetic datasets we 

compared the relevant methods, including K-means with correlation, L1 and L2 dis-

tance, hierarchical clustering, and spectral clustering. We directly assigned the true 

number of clusters to the traditional methods. We did not include deep learning-based 

dFC methods in our comparison, because these methods primarily focus on obtaining 

better features, whereas our method aimed to extract states based on predefined fea-

tures. For our method, we set the clustering model order to [2, 15], and employed the 
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K-means to generate 40 clustering solutions. Then, we extracted the stable clusters with 

stability exceeding the maximum value of 0.7 from among them. Based on previous 

literature [6], we set the step size of the random walk 𝑡 = 10. We first assessed the 

ability of the proposed method to automatically infer the number of states from the 

synthetic datasets. To compare the performance of different methods in extracting 

states, we adopted Normalized Mutual Information (NMI) to assess the accuracy rate 
of the extracted labels.  

In the fMRI experiments, our method employed the same clustering parameter 

settings as those used for the synthetic data. To further verify the effectiveness and 

interpretability of the method proposed in this paper in estimating the number of states, 

we applied the commonly used elbow criterion and our method respectively on the 

fMRI data to estimate the number of states. Subsequently, we repeated the method five 

times to evaluate the stability of the states. We employed the Hungarian algorithm [18] 

to align the estimated results from subsequent runs with those of the initial run. In ad-

dition, based on the subject-specific states corresponding to the same group-level state, 

we evaluated differences in connectivity strength between HCs and SZs using a two-

tailed two-sample t-test.  

4 Results 

4.1 Results on Synthetic Datasets 

Table 2 presents the average NMI scores (20 runs) by different methods. The re-

sults show that our method outperforms the comparison methods in terms of NMI on 

all synthetic datasets, indicating the proposed method can extract the states more accu-

rately. Furthermore, the low standard deviation across multiple runs highlights the ro-

bustness and stability of our method. Regarding the estimation of the number of states, 

as shown in Table 2, for different synthetic datasets, we obtain stable and accurate num-

ber of states (20 runs), demonstrating the effectiveness of our method in capturing the 

underlying states. 

Table 2. NMI (mean ± std) and states number (mean ± std) were derived from different meth-

ods based on different synthetic datasets. All the results were the average of 20 runs. Method 1: 

K-means with correlation distance; Method 2: K-means with L1 distance; Method 3: K-means 

with L2 distance; Method 4: hierarchical clustering; Method 5: spectral clustering. 

Synthetic 

datasets 

Method 1 Method 2 Method 3 Method 4 Method 5 Our method 

NMI NMI NMI NMI NMI 
States 

number 
NMI 

Synthetic 

datasets 1 

0.79 

± 0.06 

0.40 

± 0.04 

0.50 

± 0.03 

0.53 

± 0.00 

0.05 

± 0.00 

5.00 

± 0.00 

0.82 

± 𝟎. 𝟎𝟎 

Synthetic 

datasets 2 

0.62 

± 0.00 

0.18 

± 0.05 

0.50 

± 0.10 

0.47 

± 0.00 

0.01 

± 0.01 

3.00 

± 0.00 

0.65 

± 𝟎. 𝟎𝟏 

Synthetic 

datasets 3 

0.57 

± 0.04 

0.17 

± 0.04 

0.50 

± 0.10 

0.32 

± 0.00 

0.03 

± 0.00 

4.95 

± 0.22 

0.59 

± 𝟎. 𝟎𝟏 
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Synthetic 

datasets 4 

0.74 

± 0.07 

0.11 

± 0.10 

0.40 

± 0.09 

0.40 

± 0.00 

0.05 

± 0.01 

4.95 

± 0.22 

0.78 

± 𝟎. 𝟎𝟏 

4.2 Results on fMRI Datasets 

The Effectiveness of Estimating the Number of States. As shown in Fig. 2(A), no 

obvious elbow appears on the fMRI data, indicating that the method relying only on 

global clustering features is insufficient to reliably capture the underlying states in 

fMRI datasets. In contrast, Fig. 2(B) presents the t-SNE projection of the inter-cluster 

similarity matrix after community detection, where the obtained meta-clusters show 

obvious separability.  

 

Fig. 2. State number estimation using (A) the method based on the elbow criterion and (B) the 

method proposed in this paper. SSE: sum of squared errors 

The Stability of Extracted States. Fig. 3(A) shows that the correlations across states 

extracted in five independent runs are high (most typically over 0.85), reflecting the 

robustness of the proposed method. Additionally, we assess the stability of the extracted 

HC and SZ states across multiple runs (Fig. 3(B)). The results show that the correlation 

between different states typically exceeds 0.9, indicating that the states extracted by our 

method are highly reproducible. 
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Fig. 3. Consistency evaluation across multiple runs on fMRI datasets. (A) Correlation of the state 

time courses across different runs of the method. (B) Correlation between HCs and SZs states 

from five runs of the method. 

The Differences in Individual States Between HCs and SZs Groups. Fig. 4(A) 

shows the group-level states extracted by our method. The group differences among 

five identified connectivity states are shown in Fig. 4(B). In our results, each state 

shows significant group differences after two-sample t-tests (p < 0.001 with Bonferroni 

correction). The results reveal consistent and specific alterations in functional connec-

tivity patterns of SZs across various states. Specifically, in almost all states, HCs exhibit 

lower connectivity strength than SZs in connectivity between subcortical network 

(SCN) and default mode network, as well as between SCN and sensorimotor network. 

Conversely, HCs display higher connectivity strength than SZs in connectivity between 

SCN and cerebellum. In fact, the loops that link cerebellum with cortical cortex are 

considered to be anatomically connected through thalamus. Thus, altered cerebellar-

thalamus connectivity appeared to play a crucial role in this distributed circuit in schiz-

ophrenia [19]. 

 

Fig. 4. Differences of states between HC and SZ groups. (A) Reliable group-level functional 

connectivity states. (B) The group differences between HCs and SZs in each state, tested by two-

tailed two-sample t-tests (p<0.001 with Bonferroni correction).  

5 Conclusion 

This paper introduced a novel method for extracting stable states which was used 

to identify accurate and stable connectivity patterns without pre-determining the num-

ber of states. A key innovation lay in our ability to simultaneously retain multi-scale 

state information and significantly improve the stability of the states. A novel inter-

cluster similarity graph was introduced that captured connections between stable states 

at different scales, making the clustering structure more distinct. Furthermore, our 

method estimated the number of states adaptively based on data-driven methods, 
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without requiring prior knowledge. The proposed method was applied to synthetic da-

tasets and fMRI datasets, which verified its effectiveness and stability in extracting 

states and identified the functional connectivity of subcortical network related to schiz-

ophrenia as a key biomarker. Overall, the proposed method advances dFC analysis, 

providing a powerful and intuitive method for exploring brain function dynamics. 
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