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Abstract. Early diagnosis of neurodegenerative diseases is crucial for
effective intervention and treatment planning. However, conventional
screening tests such as Mini-Mental State Examination (MMSE) often
produce false-negative issues. While electroencephalogram (EEG) sig-
nals contain valuable neurophysiological information, multi-class classifi-
cation remains challenging due to subtle differences between conditions,
with existing methods achieving around 50-60% accuracy. Therefore, we
propose SSPNet, a novel deep learning framework for multi-class clas-
sification of neurodegenerative diseases using spatio-spectral portraits
derived from EEG signals. Our approach extracts spatio-spectral images
that maximize neurophysiological differences between Alzheimer’s dis-
ease, frontotemporal dementia (FTD), and cognitively normal subjects,
utilizing minimal frequency bands encoded through specialized asymmet-
ric convolutional blocks and attention mechanisms. To our knowledge,
this represents the first attempt to use EEG spatio-spectral portraits
for multi-class classification of neurodegenerative diseases. The proposed
SSPNet significantly improves accuracy to 72.22% compared to existing
EEG-based methods for multi-class classification. It also demonstrates
notably lower false-negative rates for FTD patients compared to MMSE,
thus accelerating practical clinical application.
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1 Introduction

The prevalence of neurodegenerative diseases is expected to increase in most
countries as life expectancy rises[13]. Dementia represents a major cause of
disability, institutionalization, and mortality, with global costs reaching US$
1 trillion[26]. Previous research indicates that Alzheimer’s disease (AD) is the
most common neurodegenerative disease, accounting for 60-70% of dementia
cases[30], with early-onset Alzheimer’s disease (EOAD) comprising 5-10% of re-
ported cases|[8]. Notably, early-onset dementia typically progresses more rapidly
than senile dementia[7], resulting in relatively shorter survival periods for EOAD
patients[4]. Additionally, frontotemporal dementia (FTD), a primary cause of
early-onset dementia, progresses faster than AD while exhibiting similar mor-
tality risk[23],[25]. Therefore, early diagnosis and therapeutic intervention are
critical factors in determining the prognosis of these conditions|7].

In clinical settings, the diagnosis of neurodegenerative diseases typically en-
compasses screening, diagnostic testing, and differential diagnostic processes,
achieved through comprehensive evaluation utilizing neuropsychological assess-
ments, neurological examinations, and neuroimaging. Among these, screening
tests serve as gatekeepers at the early stage of evaluation. The Mini Mental
State Examination (MMSE)[10] is the most widely adopted cognitive screening
tool globally[19], encompassing tests in various cognitive domains and demon-
strating high acceptability among clinical professionals[1]. Despite these advan-
tages, numerous studies have shown that the MMSE inadequately evaluates
frontal /executive function|2],[15], with various studies reporting false-negative
and false-positive issues[18],[27]. Behavioral variant FTD often maintains nor-
mal scores on standard cognitive tests in the early disease stages[29] and is
often classified as normal on MMSE[32|. Furthermore, existing screening tests
are limited to reflecting cognitive behavioral characteristics without adequately
representing neurophysiological characteristics.

Electroencephalogram (EEG) offers advantages of non-invasiveness and porta-
bility, enabling widespread utilization even in settings with limited healthcare
accessibility, thereby facilitating early detection of neurodegenerative diseases
and mediating timely intervention. Recent studies combining EEG with artificial
intelligence (AI) have demonstrated effective binary classification performance
between AD-cognitively normal (CN), AD-FTD, and FTD-CN [24],[28],[21], sug-
gesting potential for complementing existing screening protocols. Despite these
promising results, clinical environments require solutions for more complex and
diverse disease classification problems. Accordingly, another study reported the
feasibility of classifying AD, HC, and mild cognitive impairment (MCI) with
potential for progression to dementia[16]; however, multi-class classification of
EEG-based neurodegenerative diseases and neurocognitive disorders incorpo-
rating actual dementia subtypes remains challenging. One previous study[14]
showed approximately 55% accuracy in 3-class classification of AD-FTD-CN us-
ing various artificial intelligence models. Another study|[31] demonstrated 54.28%
accuracy using a convolutional neural network (CNN)-based model. Thus, multi-
class cognitive impairment classification using EEG remains a difficult problem.
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EEG typically exhibits nonlinear dynamical characteristics[11] that can be con-
sidered across time-frequency-spatial domains. However, existing classification
models have limitations in comprehensively considering EEG characteristics and
utilizing features that are representative of each cognitive impairment.

Therefore, this paper proposes a spatio-spectral image based deep learning
framework (SSPNet) to overcome limitations in multi-class classification of neu-
rodegenerative diseases. In the present study, we utilized a dataset containing
MMSE scores and clinical diagnostic labels, with the objective of complementing
existing screening processes for neurodegenerative diseases and supporting diag-
nostic procedures. Our approach extracts EEG topographic images that max-
imize differences between neurophysiological features. Specifically, we extract
spatio-spectral features from EEG topographic images by selecting minimal fre-
quency bands based on neurophysiological evidence, then encode and classify this
information using specialized asymmetric convolutional blocks (ACB)[9] and at-
tention mechanisms. The main contributions of this work are: (i) We propose
a novel deep learning framework utilizing spatio-spectral image features from
EEG topographic images for multi-class classification of neurodegenerative dis-
eases. To our knowledge, this is the first attempt to utilize EEG topography-
based spatio-spectral features in multi-class classification of neurodegenerative
diseases. (ii) We utilize representative features based on prior neurophysiological
evidence, demonstrating robust classification performance with minimal EEG
frequency bands(delta: 0.5-4 Hz, alpha: 8-12 Hz). (iii) By employing ACB and
attention mechanisms specialized for each spatio-spectral image, we can extract
frequency-specific spatial features while effectively preserving channel and spa-
tial information. (iv) Our performance evaluation on public datasets significantly
improves the accuracy of existing EEG-based methods for multi-class classifica-
tion of neurodegenerative diseases and demonstrates notably lower false-negative
rates for FTD patients compared to conventional screening methods (MMSE),
accelerating potential clinical application.

2 Method

2.1 Dataset

This study utilized a public EEG dataset[22]. This dataset consists of 36 indi-
viduals in the AD group, 23 individuals in the FTD group, and 29 individuals in
the CN group. Additionally, all subjects have recorded scores from the MMSE.
All subjects’ recordings were performed during a resting state with eyes closed.
The recording lengths by group were as follows: AD group (min=>5.1, max=21.3),
FTD group (min="7.9, max—=16.9), CN group (min=12.5, max=16.5). The dataset
was preprocessed using a Butterworth band-pass filter with a range of 0.5-45 Hz,
Artifact Subspace Reconstruction (ASR), and Independent Component Analysis
(ICA).
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Fig. 1. EEG Processing Workflow and Spatio-Spectral Portrait Features

2.2 Data Processing

EEG Segment Extraction and Epoching: This study involved segment
extraction and epoching of EEG data for the training and validation of a deep
learning framework. EEG signals from each subject were extracted for a duration
ranging from 60 to 420 seconds (a total of 360 seconds) for analysis, in order
to mitigate the influence of environmental adaptation and noise that may arise
during the initial minute. We established a criterion of a minimum of 6 minutes
of EEG data to guarantee data consistency and adequate training material,
thereby excluding subject-003, whose total data duration was the shortest at
5.1 minutes. As shown in Fig. 1, the extracted EEG data was segmented into
3-second epochs without overlap, resulting in each subject’s EEG data totaling
360 seconds divided by 3 seconds, equating to 120 epochs. The final processed
dataset comprised 87 subjects x 120 epochs, 19 channels, and 1500 time points
(3 seconds x 500 Hz sampling rate).

2.3 Proposed Framework

We propose a deep learning-based framework (Fig. 2) for effective multi-classification
of neurodegenerative diseases (AD, FTD, and CN) by extracting minimal frequency-
based spatial image features from EEG based on neurophysiological evidence.
This framework learns specific patterns of neurodegenerative diseases using spatio-
spectral features extracted from EEG topographic images derived from alpha and
delta bands of EEG signals as input.

EEG Frequency Band Configurations: The EEG alpha band indicates de-
creased power spectral density in the parietal-occipital regions in AD, reflecting
cholinergic neurotransmission impairment[3]. In contrast, the EEG delta band
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Fig. 2. Spatio-Spectral Portrait Based Deep Learning Framework(SSPNet)

shows increased frontal activity in FTD[17], characterized by left-right asymme-
try[12]. Additionally, [5] revealed that EEG frequency characteristics effectively
distinguish between AD and FTD, and the alpha/delta ratio enhances disease
monitoring and classification|6]. Based on this physiological evidence, we utilized
the EEG delta and alpha bands.

EEG topographic Feature: Asshown in Fig. 1, we generate EEG topographic
images, power values from 19 electrodes were spatially interpolated to create
128 x 128 pixel images, and a multi-taper PSD method based on seven discrete
prolate spheroidal sequence tapers was employed to achieve a balance between
frequency resolution and estimation variance.

Spatio-Spectral Portraits Based Multi-Input Structure: The proposed
framework employs a dual-branch architecture, processing alpha and delta bands
independently to capture distinct spatial characteristics. The alpha band exhibits
upper-lower asymmetry, emphasized using an additional vertical kernel(K x 1).
In contrast, the delta band shows left-right asymmetry, particularly in FTD,
which is enhanced using a horizontal kernel(1 x K') Here, K represents the kernel



6 Kim et al.

size, ensuring effective integration of EEG’s physiological properties into feature
extraction.

Channel and Spatial Attention Mechanisms: To enhance the most infor-
mative spectral components, channel attention is applied, prioritizing critical
PSD features in each channel. Additionally, spatial attention refines the repre-
sentation of spatial asymmetry, enabling the model to focus on key variations
associated with neurodegenerative diseases. These attention mechanisms are in-
dependently applied to the alpha and delta bands, preserving their distinct spec-
tral and spatial properties.

Cross-Attention Based Feature Fusion: To integrate complementary infor-
mation, features from the alpha and delta bands undergo cross-attention, refining
their representations before fusion. This mechanism captures inter-band rela-
tionships by computing complex features (element-wise summation) to extract
shared representations and differentiated features (element-wise subtraction) to
highlight contrastive patterns. The refined features are then concatenated and
fused through convolution, ensuring a robust integration of both shared and
distinct EEG characteristics.

Multi-Head Attention Mechanisms: After feature fusion, a bottleneck struc-
ture is employed to further refine feature representations, ensuring compact yet
discriminative embeddings. To analyze EEG signal interactions from multiple
perspectives, a multi-head attention mechanism is applied, capturing intricate
relationships between the alpha and delta bands. This multi-faceted analysis en-
ables the model to learn rich and highly discriminative feature representations,
ultimately leading to improved classification performance in distinguishing neu-
rodegenerative diseases.

2.4 Majority Voting Strategy and Classification

To enhance classification robustness, each subject’s EEG data was segmented
into 120 epochs, subsequently transformed into topographic images, with inde-
pendent classification executed for each individual image. The final classification
determination employs a majority voting scheme, selecting the most frequently
predicted class across the 120 images. The data were used for training and vali-
dation through 5-fold cross-validation. Within each fold, the dataset was further
divided into training and validation sets. The model was trained for up to 50
epochs per fold, with early stopping applied when validation loss showed no
improvement for 10 consecutive epochs, ensuring stable convergence while min-
imizing overfitting. To further validate the model’s performance, we conducted
a comparative analysis using EfficientNet[33] and EEGNet[20], a CNN-based
architecture trained under the same experimental conditions.
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Table 1. 3-Class Classification Accuracy Comparison

Model ‘

Accuracy ‘ Precision ‘ Recall ‘ F1-Score
LDA[14] 55.69%+9.14% | 55.69%+9.14% | 55.69%+9.14% | 55.69%+9.14%
Linear SVC[14] | 57.54%%9.89% | 57.54%%9.89% | 57.54%%9.89% | 57.54%%9.89%
SVM (RBF)[14]| 51.35%+9.92% | 51.35%+9.92% | 51.35%+9.92% | 51.35%+9.92%
CNNJ31] 54.28%=+5.92% | 50.41%+14.75% | 51.26%+28.45% | 49.17%+22.75%
EEGNet 44.44%+19.24% | 51.00%+15.17% | 44.44%+19.24% | 43.83%+3.56%
(All bands)
EEGNet | 50.00%450.00% | 39.28%+37.62% | 50.00%-£50.00% | 40.00%-34.64%
(Delta+Alpha)
EfficientNet | 61.11%%53.57% | 40.83%=+35.38% | 61.11%+53.57% | 48.80%+42.30%
Proposed |72.22%+9.61%|72.22%+9.61%|72.22%+9.61%|72.22%+9.61%

3 Results and Discussions

The results of Experiment 1 and 2 are summarized in Table 1 and Table 2, re-
spectively. To evaluate the general classification performance, we compared our
framework with previously published studies that attempted 3-class classifica-
tion on the same dataset. For Experiment 2, which specifically evaluates the
detection of false-negative MMSE cases, we conducted a comparative analysis
using EEGNet, EfficientNet, and the proposed framework to assess their ability
to identify these challenging cases.

3.1 Experiment 1: General Classification

In Experiment 1, the performance of the proposed model for multi-class classi-
fication of AD-FTD-CN was compared and evaluated, with results summarized
in Tablel. Previous studies[14] utilized raw EEG signals as features and em-
ployed classifiers such as linear discriminant analysis (LDA) and support vec-
tor machine (SVM) for classification. However, their reported performance on
3-class classification remained below 55%, highlighting the limitations of tra-
ditional machine learning approaches in capturing complex EEG patterns. In
contrast, EfficientNet, a CNN-based architecture, achieved an improved accu-
racy of 61%, outperforming EEGNet and prior research methods. Nevertheless,
the proposed framework achieved the highest accuracy of 72.22% among the
compared models, demonstrating superior classification performance. This re-
sult suggests that incorporating frequency-specific spatial representations and
advanced feature fusion strategies enhances the model’s ability to distinguish
between neurodegenerative conditions.

3.2 Experiment 2: MMSE False-Negative Cases in FTD

Experiment 2 was conducted to minimize the false-negative problem of MMSE,
a significant challenge in existing cognitive assessments. Generally, MMSE scores
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Table 2. Comparison of Classification Accuracy by Model for FTD Patients with
False-Negative Issues through MMSE

Accuracy Precision Recall F1-Score
Model |[AD[FTD] CN |AD [FTD[ CN |[AD [FTD| CN | AD [FTD| CN
Overall Overall Overall Overall
EEGNet |100%] 0% [ 0% [33%] 0% | 0% [100%] 0% | 0% [50% [ 0% | 0%
(All bands) | 33.33%£57.73% | 11.11%+19.24% | 33.33%L57.73% | 16.66%+:28.86%
EEGNet | 11% [ 11% [100% [100%][100%] 36% | 11% | 11% [100% [19.9%][19.9%]52.9%
(Delta+Alpha)| 40.74%£51.32% | 78.66%=+36.95% | 40.74%+£51.32% | 30.97%=£19.02%
EfficientNet 067 | 0% [ 88% | 50% | 0% [53.3%| 66% [ 0% | 88% [57.1%]| 0% | 66%
51.84%+46.25% | 34.44%+29.87% | 51.84%+46.25% | 41.26%+36.05%
Proposed 66%55% [100%|100%] 66% [69.2%] 55% | 66% [ 100% |71.4%] 66% [81.8%
74.07%+23.13%]|78.63%+18.55%|74.07%+23.13%| 73.29%+7.74%

of 24 or above are classified as normal; however, in the dataset used, the AD
group showed 0 cases (0%) of false-negatives among 36 subjects, while the FTD
group demonstrated 9 cases (approximately 39%) of false negatives among 23
subjects. Therefore, we evaluated the potential for additional identification of
these 9 FTD patient cases with false negatives using the proposed framework
(SSPNet). For this purpose, 9 false negative FTD patients were tested alongside
9 randomly selected AD patients and 9 healthy controls. As shown in Table 2,
most models, including EfficientNet and other CNN-based architectures, expe-
rienced difficulties in FTD classification. Only EEGNet utilizing delta and al-
pha band features classified a subset of the false-negative FTD cases. However,
the proposed framework outperformed all models and effectively classified false-
negative FTD subjects. These results emphasize the robustness of the proposed
framework and demonstrate its effectiveness in additionally identifying FTD pa-
tient cases despite the false-negative issues of MMSE. This suggests enhanced
classification reliability in clinical diagnosis.

4 Conclusion

In this study, we propose a novel EEG spatio-spectral portraits-based deep learn-
ing framework (SSPNet) to improve existing multi-classification performance in
neurodegenerative diseases. The proposed method constructs spatial images from
minimal frequency bands that maximize neurophysiological features from EEG.
Subsequently, by utilizing specialized ACB and attention mechanisms to effec-
tively extract and classify frequency, spatial, and channel features, our approach
demonstrates the potential to overcome the challenges in multi-classification of
neurodegenerative diseases. Notably, our framework shows lower false-negative
error rates for FTD compared to the commonly used MMSE screening test,
demonstrating its possibility to address more complex clinical problems. While
validation across diverse datasets should be performed in the future to ensure
the generalizability and robustness of the proposed framework, it still demon-
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strates significant potential to be effectively integrated into real-world clinical
workflows.
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