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Abstract. Accurate segmentation of orbital bones in facial computed
tomography (CT) images is essential for the creation of customized im-
plants for reconstruction of defected orbital bones, particularly challeng-
ing due to the ambiguous boundaries and thin structures such as the or-
bital medial wall and orbital floor. In these ambiguous regions, existing
segmentation approaches often output disconnected or under-segmented
results. We propose a novel framework that corrects segmentation results
by leveraging consensus from multiple diffusion model outputs. Our ap-
proach employs a conditional Bernoulli diffusion model trained on diverse
annotation patterns per image to generate multiple plausible segmenta-
tions, followed by a consensus-driven correction that incorporates posi-
tion proximity, consensus level similarity, and gradient direction similar-
ity to correct challenging regions. Experimental results demonstrate that
our method outperforms existing methods, significantly improving recall
in ambiguous regions while preserving the continuity of thin structures.
Furthermore, our method automates the manual process of segmentation
result correction and can be applied to image-guided surgical planning
and surgery.

Keywords: Segmentation · Diffusion model · Consensus · Correction ·
Inter-observer variability.

1 Introduction

Orbital bone fractures commonly occur in thin regions, such as orbital medial
wall and orbital floor [6]. Accurate orbital bone segmentation in computed to-
mography (CT) images is crucial in craniomaxillofacial surgery, particularly for
⋆ Corresponding author
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designing patient-specific implants and establishing image-guided surgical plans.
However, segmenting these thin bone structures presents significant challenges
due to their low contrast with surrounding tissues and ambiguous boundaries
caused by partial volume effects in thin structures [10], leading to inter-observer
variability in manual annotations. Previous study has quantified this variabil-
ity using intra-class correlation coefficient (ICC) in manual orbital bone an-
notation, reporting lower consensus in thin bone regions (ICC=0.715 for or-
bital medial wall, ICC=0.824 for orbital floor) compared to whole orbital bone
(ICC=0.931) [9]. Despite recent attempts such as MSDA-Net [3], which applied
multi-scale and dual attention modules to improve segmentation accuracy for or-
bital bones of varying thickness, evaluation results showed variation depending
on which annotation was used as reference standard [2].

Recently, diffusion models have shown remarkable advances in medical seg-
mentation tasks [16,7]. Unlike traditional CNN-based methods that produce de-
terministic results, diffusion models leverage the stochastic nature of noise sam-
pling to generate diverse plausible segmentations. We argue that this inherent
capability can provide insight when dealing with particularly thin structures and
ambiguous boundaries that even expert annotators exhibit significant variabil-
ity. Although this stochastic nature enables the generation of diverse segmen-
tations, producing meaningful segmentation masks requires conditioning on the
corresponding input image to guide the generation process [8]. Conditional dif-
fusion models improve segmentation performance by incorporating anatomical
structure information from medical images as conditioning input [1,11]. While
most existing studies rely on Gaussian noise, several studies have proposed using
Bernoulli noise instead, which is more appropriate for binary mask segmentation
tasks due to the discrete nature of the masks [5,13].

In this paper, we present a novel framework that combines diffusion model-
based segmentation with consensus-driven correction to improve accuracy in
challenging regions. Our main contributions are: (1) We employ a conditional
Bernoulli diffusion model for segmentation, providing three different annota-
tion masks per input image to learn inter-observer variability. (2) We pro-
pose consensus-driven correction to address the inherent variation in ambiguous
boundaries, considering position proximity, consensus level similarity, and gradi-
ent direction similarity across multiple segmentations from the diffusion model.
(3) Experimental results on thin bones of orbital medial wall and orbital floor
demonstrate that our method corrects challenging regions and segmentation per-
formance outperforms other comparison methods.

2 Method

2.1 Conditional Bernoulli Diffusion Model for Image Segmentation

Fig. 1 represents the overview of our conditional Bernoulli diffusion model for
learning diverse annotation patterns and generating multiple plausible segmen-
tations. Our implementation is based on BerDiff [4], a diffusion model based on
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Fig. 1. Illustration of our conditional Bernoulli diffusion model

Bernoulli noise, that is more appropriate for binary medical image segmentation
tasks, where masks consist exclusively of discrete values (0 or 1).

The model takes M annotations from multiple annotators per input image
to capture inter-observer variability. During the forward process, binary masks
adds noise through Bernoulli noise sampling. In the reverse process, the model
progressively removes noise to generate segmentations, using CT images as a
condition to guide the generation process. Conditioning is implemented by con-
catenating CT images with the noisy masks as input to the denoising network,
providing intensity and anatomical context information that enables the model
to learn structural patterns during the denoising.

An advantage of our approach is the ability to learn from various anno-
tation patterns, reducing dependency on subjective annotation by any single
annotator. By training on M different annotations per input image, the model
captures the inherent inter-observer variability in challenging regions. This is
particularly valuable for ambiguous boundaries where even expert annotators
disagree. In these regions, our diffusion model generates varying plausible seg-
mentations based on the learned annotation distribution, which we identify as
challenging areas requiring consensus-driven correction.

To capture the level of consensus among plausible segmentations, we gener-
ate a consensus-driven uncertainty map by aggregating multiple segmentations
and normalizing them to a [0, 255] range, as shown in Fig. 2. This map provides
a spatial representation of uncertainty, with higher values indicating stronger
consensus level across segmentations and lower values highlighting regions of
uncertainty. This uncertainty information serves as a foundation for our subse-
quent consensus-driven correction method.
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Fig. 2. Process of generating a consensus-driven uncertainty map

2.2 Consensus-driven Correction

We are dealing with ambiguous regions that are inherently unclear in CT images,
so low consensus (high uncertainty) exhibits in the consensus-driven uncertainty
map. Even with low consensus, nearby pixels with similar spatial and consensus
characteristics are identified as potential pixels for correction. We leverage the
consensus-driven uncertainty map, which provides valuable insight into poten-
tially correct segmentation areas.

Consensus-driven correction minimizes the energy function in Eq. 1, which
combines the unary potential (Eq. 2) and pairwise potential (Eq. 3). The unary
potential is derived from the consensus level from the map, providing a pixel-
wise measure of segmentation confidence. The pairwise potential incorporates
spatial and consensus information from the map, including position proximity,
consensus level similarity, and gradient direction similarity. Position proximity
helps maintain consistent segmentation by considering close regions, which is im-
portant for preserving anatomical continuity in thin structures. Consensus level
similarity ensures that similar uncertain regions are corrected consistently. Gra-
dient direction similarity helps maintain structural directional patterns, which is
critical for thin structure to preserve shape. For example, even when consensus
is low in a specific region, our method may correct a pixel classification based
on its proximity to a neighboring pixel that is segmented as bone and has simi-
lar consensus level and gradient direction. The energy function is formulated as
follows:

E(x) =
∑
i

ψi(xi) +
∑
ij

ψij(xi, xj) (1)

ψi(xi) = −logP (xi) (2)

ψij(xi, xj) = µ(xi, xj)[w1 exp(−
|pi − pj |2

2θ2α
− |ci − cj |2

2θ2β
− |di − dj |2

2θ2γ
)

+ w2 exp(−
|pi − pj |2

2θ2δ
)] (3)
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where xi, xj represent the class of pixel i,j. P (xi) in the unary potential denotes
the probability of pixel i belongs to a specific class, as derived from the consensus-
driven uncertainty map. The pairwise potential contains three Gaussian kernels
accounting for positional proximity (p), consensus level similarity (c), and gradi-
ent direction similarity (d). The class compatibility function µ(xi, xj) is defined
based on the Potts model: µ = 1 if xi ̸= xj , µ = 0 otherwise. This penalizes
assigning different classes to nearby, similar pixels. The parameters θα, θβ , θγ ,
and θδ are scaling factors for the Gaussian kernels, controlling the influence
range of each characteristic. These scaling factors were determined through mul-
tiple experiments considering the image size, consensus level range, and gradient
direction range. We set θα = 80, θβ = 60, θγ = 2, θδ = 3, w1 = 15, w2 = 1.

3 Experiment

3.1 Dataset and Preprocessing

This study was approved by the Institutional Review Board of Severance Hos-
pital, Yonsei University College of Medicine, Seoul, Republic of Korea (IRB No.
4-2016-0603). The dataset comprises facial CT images from 71 patients, divided
into a training set of 57 cases and a test set of 14 cases. All images have a matrix
size of 512×512 pixels, with in-plane resolution ranging from 0.4 to 0.619mm and
a slice thickness of 1mm. Each image was manually annotated by three annota-
tors—a neurosurgeon with over 15 years of experience and two senior medical
students—following the same annotation protocols.

We performed preprocessing to ensure consistency across different CT scan-
ners and acquisition protocols. This included intensity normalization using a
window width of 600 HU and window level of 100 HU, followed by conversion
from 12-bit to 8-bit representation (0-255 intensity range). Additionally, all im-
ages were resampled to a uniform pixel spacing of 0.4 x 0.4 mm2, corresponding
to the highest resolution present in the dataset.

3.2 Experimental Setup and Implementation Details

Comparison Methods. We compare our method with both CNN-based and
diffusion-based segmentation approaches. The CNN-based methods include U-
Net [12] and MSDA-Net [3], while diffusion-based methods include MedSegDiff-
v2 (Gaussian noise) [15] and BerDiff (Bernoulli noise) [4]. CNN-based meth-
ods produce deterministic results for a given trained model, whereas diffusion-
based methods generate multiple segmentations from a single model due to their
stochastic nature.

Evaluation Metrics. Three metrics are used for performance evaluation, in-
cluding Dice Similarity Coefficient (DSC), recall, and precision. As reference
standard, we use masks generated by the STAPLE algorithm [14] from three an-
notations, which is widely used approach to combine multiple expert annotations
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Table 1. Segmentation performance of our proposed method and comparison methods.
The best results are highlighted in bold. ‘*’: p<0.001 compared to our method based
on a t-test.

(%)

Methods Orbital medial wall Orbital floor
DSC Recall Precision DSC Recall Precision

U-Net [12] 82.28* 79.70* 85.92 89.86 90.24* 89.85
MSDA-Net [3] 83.39* 84.18* 83.26* 89.99 92.72 87.79*

MedSegDiff-v2 [15] 84.07* 81.58* 87.26* 90.11* 88.88* 92.02*
BerDiff [4] 86.14 84.60* 88.16* 91.53 92.15 91.37

BerDiff + Correction (Ours) 86.31 87.83 85.38 91.36 93.24 90.08

to generate a reference standard. To focus on thin bone regions, we manually
define two evaluation ROIs for orbital medial wall and orbital floor.

Implementation Details. The diffusion model is trained with a batch size of 2,
using the AdamW optimizer with a learning rate of 5e-5 and a linear noise sched-
ule over 1000 timesteps. The diffusion model is trained for 100,000 iterations on
a NVIDIA GeForce RTX 3090 GPU using Python 3.7 and PyTorch 1.11. During
training, one of multiple annotations was randomly selected for each iteration,
allowing the model to learn various annotation patterns. We adopted the DDIM
sampling strategy for BerDiff and the DDPM sampling strategy for MedSegDiff-
v2, following their original implementations, and generated 200 segmentations
for each diffusion-based method. For evaluation, CNN-based methods produced
a single segmentation result, whereas diffusion-based methods generated 200 seg-
mentations, which were averaged to obtain the final output. Our method also
utilized 200 segmentations from BerDiff for correction.

3.3 Results

We present the quantitative and qualitative results in Table 1 and Fig. 3, re-
spectively. As can be seen in Table 1, our method outperforms all CNN-based
methods in all metrics, including DSC, recall, and precision. In particular, the re-
call of the orbital medial wall showed statistically significant improvement with
p < 0.001. This improvement is particularly important for addressing under-
segmentation at ambiguous boundaries while preserving continuity in thin struc-
tures.

Fig. 3 demonstrates our correction capabilities in the challenging regions.
The red boxes highlight ambiguous regions, which show high uncertainty in the
consensus-driven uncertainty map. CNN-based methods show disconnected seg-
mentation in those regions. BerDiff shows improved results compared to CNN-
based methods, but still fails, leaving disconnected regions. However, our pro-
posed method successfully corrects thin structures in these challenging areas by
leveraging the clear vertical directionality of the orbital medial wall through a
consensus-driven correction approach.
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Fig. 3. Representative orbital bone segmentation results. Consensus-driven uncertainty
map is generated by accumulating multiple segmentations using a conditional Bernoulli
diffusion model (BerDiff). The red box is zoomed in to emphasize the thin region within
the white box.

4 Conclusion

In this paper, we proposed a framework combining conditional Bernoulli diffusion
model-based segmentation with consensus-driven correction. This approach aims
to improve the segmentation performance of thin structures in orbital bones, with
a particular focus on the orbital medial wall and orbital floor, which possess am-
biguous boundaries. In our experiments, we addressed under-segmentation issues
in ambiguous regions by leveraging the ability of our proposed method to learn
from various annotation patterns. This approach reduces dependency on sub-
jective annotation by any single annotator and enables us to use the consensus
among multiple segmentations from the diffusion model as valuable informa-
tion. By considering directionality in our consensus-driven correction method,
we achieved improvements of up to 4.03% in DSC and 8.13% in recall for orbital
medial wall compared to CNN-based methods. Our novel framework learns data
distribution from multiple annotations in ambiguous regions and ensures consis-
tent segmentation results while reducing manual correction process, making it
applicable to surgical planning and customized implant creation.
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