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Abstract. We present a novel dual-stream deep learning architecture,
AcouSem-AFNet, for automated tuberculosis (TB) detection using acous-
tic analysis of respiratory sounds. The proposed architecture utilizes
two complementary pathways to extract distinct semantic and acoustic
characteristics essential for identifying TB-related respiratory patterns.
Specifically, the semantic stream employs a Whisper encoder to model
structured patterns in respiratory events, while the acoustic stream lever-
ages WavLM to capture detailed temporal dynamics characteristic of TB
cough sounds. These distinct features are fused through a specialized
backbone with squeeze-excitation mechanisms and residual connections,
designed explicitly to maintain discriminative capabilities and mitigate
overfitting challenges typical of limited medical datasets. Evaluated on
the CODA-TB challenge dataset, our approach achieves state-of-the-art
performance with an accuracy of 78.10% and an AUC of 0.79, demon-
strating improvements of 3% in AUC and 2% in accuracy over leading
baseline methods. Our framework enables rapid, non-invasive TB screen-
ing, particularly beneficial for resource-limited settings, demonstrating
the feasibility of deep learning-based acoustic analysis as a scalable, pre-
liminary diagnostic tool to enhance global TB screening accessibility.
The code and models are publicly available at https://github.com/
IAB-IITJ/AcouSem-AFNet!
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1 Introduction

Tuberculosis (TB), caused by Mycobacterium tuberculosis, remains a critical
global health challenge, with 9.9 million cases and 1.3 million deaths reported
in 2020 [1]. TB, one of humanity’s oldest infectious diseases [2|, has claimed
an estimated one billion lives throughout history [3|. Currently ranking as the
leading cause of death among infectious diseases globally, TB continues to pose
a significant public health challenge with approximately 10 million new active
cases reported annually [4]. Despite its severity, approximately 40% of TB cases
go undiagnosed due to limited healthcare access and diagnostic barriers [5]. This
significant gap in detection highlights the urgent need for accessible, non-invasive
screening methods.
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Fig.1: Highlights the visual abstract, addressing the Al-based automatic TB
detection from the cough sounds.

Traditional TB screening through self-reported symptoms presents critical
limitations: low specificity leading to over-testing, and stigma-induced under-
reporting resulting in inadequate care @ This necessitates the development
of objective, low-cost point-of-care screening methods. Acoustic-based TB detec-
tion emerges as a promising specimen-free, automated screening solution that
could optimize resource allocation for molecular testing .

Cough, being a primary symptom of TB, presents a promising acoustic
biomarker for automated disease detection E[I The scientific basis for acous-
tic TB detection lies in the pathophysiology of respiratory diseases. Different
pathological conditions alter airway dynamics and glottal behaviour, produc-
ing distinctive acoustic signatures during cough episodes . Previous research
has demonstrated the feasibility of distinguishing various respiratory conditions
(asthma, bronchitis, pertussis) through cough acoustics, suggesting the viability
of automated TB detection through acoustic pattern analysis , as also
demonstrated in Figure [I] as the visual abstract for this problem statement.

Recent advances in deep learning and acoustic signal processing have en-
abled the development of sophisticated audio analysis systems. Al models of-
fer a transformative approach to respiratory illness diagnosis by providing non-
invasive, cost-effective, and real-time data interpretation capabilities, addressing
the limitations of traditional diagnostic methods and presenting particular value
for resource-constrained settings. While preliminary studies [13|[14]have demon-
strated the potential of cough-based TB screening, these efforts were limited by
small sample sizes and restricted settings. Our work addresses these limitations
by introducing a novel deep-learning framework, AcouSem-AFNet, that lever-
ages raw audio-based features for robust TB classification from cough sounds.
This research advances the field in three key aspects: (1) we propose a new ar-
chitecture optimized for acoustic TB biomarker detection, (2) we demonstrate
state-of-the-art performance on the comprehensive CODA-TB dataset, and (3)
we provide an extensive comparison with different models.

2 Related Work

Respiratory disease detection through cough analysis has shown promising re-
sults across multiple conditions. Using cough frequency analysis, Marsden et
al. successfully detected Asthma Bronchiale (AB). Infante et al. demon-
strated cough sounds for screening AB, COPD, and TB. Windmon et al.
employed random forest classifiers for early CHF and COPD detection. Recent
advances include acoustic feature extraction (MFCCs, ZCR) for pneumonia 18|
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and COVID-19 classification [14}|19], while [20] demonstrated the effectiveness
of generative adversarial networks for respiratory disease classification.

In the existing literature on TB detection through cough sounds, Tracey et
al. [21] and Larson et al. |[22] linked cough frequency to TB recovery. Pahar et
al. [14] achieved high specificity (95%) and sensitivity (93%) using logistic re-
gression on a small dataset (16 TB patients, 35 healthy controls). In follow-up
work, Pahar et al. [19] tested multiple deep learning models on 47 TB patients,
with ResNet50 [23] achieving 92.59% accuracy in TB vs. COVID-19 classifi-
cation and 86.31% in three-class discrimination. Frost et al. [24] implemented
Bi-LSTM on 74 subjects (28 TB patients, 46 controls), achieving 75% specificity
and 89% sensitivity. These studies demonstrate that cough acoustics contain sig-
nificant discriminative information for the classification of respiratory diseases,
suggesting a potential for developing automated screening tools.

3 Methodology

The proposed methodology, AcouSem-AFNet, for TB detection from respira-
tory audio recordings employs a dual-stream architecture integrated with a
RawNet3-based backbone [25] network specifically optimized for medical au-
dio analysis. The system processes raw audio inputs through parallel semantic
and acoustic pathways to extract complementary features crucial for identify-
ing TB-related respiratory patterns, including distinctive cough characteristics,
breathing anomalies, and associated acoustic signatures. The semantic stream,
powered by the Whisper-large encoder, captures structured patterns in respi-
ratory events, while the acoustic stream, utilizing WavLM [26], preserves fine-
grained temporal characteristics specific to TB-related sounds. These comple-
mentary features are integrated through a specialized backbone network incor-
porating squeeze-excitation mechanisms and residual connections, designed to
maintain discriminative power while preventing overfitting on limited medical
datasets. The complete processing pipeline consists of two main components:
(1) a front-end feature extraction module utilizing dual-stream processing for
comprehensive respiratory sound analysis and (2) a backend network featuring
AFMS-Res2MP blocks with targeted regularization for robust TB detection.

3.1 Awudio Encoders and Modality Adapters

We propose a dual-stream design that processes semantic and acoustic cues in
parallel to capture acoustic features for TB detection from audio cough record-
ings. Several works [26L/27] demonstrate that Semantic Features Fsemantic and
Acoustic Features Ficoustic are critical for speech processing tasks. This design
choice helps focus on acoustic information, including P (pitch), 7 (timbre) and
content information extracted from semantic tokens S = {s1, s2, ..., 8, }.

For semantic information processing, we leverage the Whisper-large encoder
[28] Pwhisper : X — Hs, pre-trained through weak supervision, enabling robust
extraction of linguistic features with zero-shot capabilities. The acoustic stream
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utilizes WavLM [29] @yavim : X — H,, which specializes in capturing speaker-
specific characteristics and timbral qualities. This complementary combination
allows our model to analyze content-level semantic features and fine-grained
acoustic properties crucial for TB detection.

The processing pipeline operates on batched input signals X € RE*T | where
B represents the batch size and T' the temporal dimension. For semantic anal-
ysis, the input is transformed into log-mel spectrograms S € RE*F*T with
frequency bins. For acoustic analysis, we use raw audio waveforms to pass in the
WavLM encoder. These representations are processed through their respective
encoders to produce feature spaces:

Hs = sthisper(s) S RBXTSXDS
Ha = dswavlm(X) S RBXTQXDQ

where Ty, T, represent temporal dimensions and Dy, D, denote feature di-
mensions for semantic and acoustic features respectively. This parallel processing
enables our model to capture both semantic content and acoustic characteris-
tics simultaneously. We pass the outputs H; and H, into semantic and acoustic
adapters, respectively:

A, = f,(H,) = Adapter,(H,)

A, = f,(H,) = Adapter,(H,)

The semantic and acoustic adapters each comprise two sequential 1-D convo-
lutional layers designed for temporal downsampling and alignment, followed by
a down-up bottleneck adapter. Each adapter concludes with a linear projection
layer W, € RP:x1024 and W, € RPax1024 that maps the features to a shared
dimensional space, enabling effective integration of both information streams.
These adapters align both feature streams to a common representation space
RExmx1024 \We concatenate the outputs of both adapters to get:

Xy = [As;Aa] c Rmex2048

before passing them to the backbone for final classification.

3.2 Backend Network Architecture

The backend network of our TB detection system is built upon the RawNet3
architecture [25]. This architecture was selected for its proven effectiveness in
capturing nuanced acoustic characteristics while maintaining computational ef-
ficiency crucial for medical applications with limited dataset availability.

At the core of our backend network are three AFMS-Res2MP blocks [25]
arranged sequentially. Each AFMS-Res2MP block, as illustrated in Figure [2]
consists of a sophisticated arrangement of convolutional layers with residual con-
nections and feature map scaling. The input to each block first passes through
a ConvlD layer, followed by ReLU activation and batch normalization (BN).
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Fig. 2: Illustrates the architecture of the AcouSem-AFNet model. The proposed
framework uses Whisper and WavLM encoders for semantic and acoustic pro-
cessing, combined through adapters and AFMS blocks for final classification.

This is succeeded by a Res2Dilated ConvlD layer with ReLU and BN, which
employs dilated convolutions to expand the receptive field without increasing
the parameter count essential for capturing the broad temporal patterns in res-
piratory sounds indicative of TB. Another ConvlD layer with ReLU and BN
follows, with its output added to the block input via a residual connection. The
final component is a max pooling layer with an « Filter-wise feature Map Scaling
(AFMS) module.

The AFMS module builds upon the filter-wise Feature Map Scaling (FMS)
technique, which independently scales each filter of a feature map to derive more
discriminative representations of respiratory characteristics. Let ¢ = [¢1, ¢, - , cF]
represent a feature map output from a residual block, where c; € RT, T is
the sequence length in time, and F' denotes the number of filters. The AFMS
module first performs global average pooling on the time axis, followed by feed-
forwarding through a fully-connected layer with sigmoid activation to derive a
scale vector s = [s1, S2,- -, sr|, where sy € RL.

In our implementation for TB detection, we utilize both multiplicative and
additive scaling methods to enhance the discriminative power of respiratory
sound features. The multiplicative method applies the scale vector as c} =cy-5f,
while the additive method implements c} = ¢ + sy. For optimal performance in
capturing the subtle acoustic signatures of TB, we employ a sequential applica-
tion of both methods, expressed as:

cp=(cy+s5) sy (1)

This approach provides several advantages for TB detection from respiratory
sounds. The multiplicative scaling functions similarly to an attention mecha-
nism in the filter domain, allowing the network to emphasize specific frequency
components particularly relevant to TB-related acoustic patterns. Unlike con-
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ventional softmax-based attention, our sigmoid-based scaling prevents excessive
information removal, preserving the complementary features captured by differ-
ent filters indicating TB presence.

The additive scaling introduces data-driven perturbation to the feature maps,
potentially increasing their discriminative power for distinguishing TB-related
sounds from normal respiratory patterns or other conditions. This concept is
particularly relevant for TB detection, where subtle variations in acoustic char-
acteristics can significantly impact diagnostic accuracy. In the first two AFMS-
Res2MP blocks, we incorporate max-pooling operations that serve as effective
regularization techniques, crucial for preventing overfitting on our limited TB au-
dio dataset. This design enhances the model’s generalization capabilities across
diverse patient populations and variable recording conditions while maintaining
sensitivity to TB-specific respiratory signatures.

The three AFMS-Res2MP blocks process the concatenated features from the
front-end dual streams, progressively refining the representation to capture the
complex acoustic patterns associated with TB. A fully connected layer follows
these blocks, mapping the extracted features to the final binary classification
output indicating the presence or absence of TB. This carefully designed backend
architecture enables robust TB detection from respiratory audio recordings while
maintaining exceptional performance despite limited training data availability.
The complete architecture of the AcouSem-AFNet model is shown in Figure [2]

4 Experimental Setup

Dataset: To assess the performance of the AcouSem-AFNet model for auto-
mated diagnosis of TB from cough sounds, we used the Cough Diagnostic Algo-
rithm for Tuberculosis (CODA TB) challenge dataset | [30]. The CODA-TB chal-
lenge, organized by Sage Bionetworks, focused on developing algorithms to de-
tect pulmonary tuberculosis (TB) through acoustic analysis of cough recordings
collected over a two-week period. This initiative aimed to advance automated
TB screening by leveraging machine learning approaches to identify distinctive
acoustic signatures in TB-positive cough episodes. The subject age is above 18 or
older, with a cough sound of 0.5 seconds, collected from health centers of 7 coun-
tries (India, Philippines, South Africa, Uganda, Vietnam, Tanzania, Madagas-
car). The task associated is a TB-positive or TB-negative cough. The CODA-TB
dataset contains 9,772 cough recordings from 1,105 patients, including detailed
demographic, clinical, and microbiological diagnostic metadata. Initially devel-
oped for the CODA-TB DREAM Challenge competition, the training dataset is
now publicly accessibleﬂ Researchers can utilize this data to develop acoustic-
based TB screening models, with model evaluation performed on a separate test
set. To build our proposed approach, we performed the 70:10:20 train-val-test
split on the publicly available training set.

! https://www.synapse.org/Synapse:syn31472953 /wiki/619711
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Baselines: We consider eight different existing architectures to compare the
proposed AcouSem-AFNet model. We consider both variations of models that
take raw audio as input and spectrogram-like features. We use models such
as RawNet3 that take input as raw audio signals, whereas models such as
MesoNet [31] and SpecRNet [32] take spectrogram features as input. We use
the variant proposed in the paper [33] for the implementation of SpecRNet and
MesoNet. For the spectrogram-based models, we use LFCC and the output of
the Whisper ASR encoder.

Implementation Details: PyTorch is used to implement the proposed model.
WavLM and Whisper are used from the Hugging Face repository. We use a vari-
ant of Whisper and WavLM. The proposed model is trained for 50 epochs, with
AdamW as the optimizer and a batch size of 32. The learning rate and weight
decay are set to le-3 and be-4, respectively. The training, validation, and evalu-
ation data consist of the 6841, 977, and 1954 samples, respectively.

Evaluation Metrics: We evaluate our proposed AcouSem-AFNet approach
using the AUROC and overall accuracy as the evaluation metrics.

5 Results

To assess the classification capabilities for TB diagnosis from cough acoustics,
we compared the proposed AcouSem-AFNet model with the baseline models.
The quantitative results are tabulated in Table [} representing the AUC score
and overall accuracy for baselines and the proposed model. From the results, the
proposed approach outperforms the baseline models with an overall improvement
from (3-18)% and (2-7)% in terms of the AUC and accuracy scores, respectively.
To demonstrate performance, we provide the Receiver Operating Characteristics
(ROC) Curve plot, shown in Figure

Our evaluation demonstrates that the dual-stream architecture of AcouSem-
AFNet outperforms all baseline models in tuberculosis detection from respiratory
audio recordings. As shown in Table[I] the proposed model achieves superior per-
formance with 78.10% accuracy and a mean AUC of 0.79, representing significant
improvements over other baseline architectures.

The performance gap between our AcouSem-AFNet approach and the nearest
competitor (SpecRNet with 76.61% accuracy and 0.76 AUC) highlights the effec-
tiveness of our architectural innovations. While SpecRNet demonstrates strong
performance as a single-stream approach, it fails to capture the full spectrum
of TB-related acoustic signatures. Similarly, RawNet3 performs reasonably well
(73.69% accuracy, 0.71 AUC) but lacks the specialized dual pathway design that
enables comprehensive feature extraction for semantics and acoustic characteris-
tics. The Whisper variants (SpecRNet and MesoNet) consistently underperform
with accuracies around 71.6%, and AUC scores between 0.61-0.66, indicating
their limitations in capturing the subtle acoustic patterns associated with TB
respiratory sounds. This underscores the insufficiency of relying solely on general
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Receiver Operating Characteristic

Models Accuracy(%) Mean AUC
Whisper SpecRNet 71.55 0.66
SpecRNet 76.61 0.76 .
Whisper LCNN 71.60 0.65
MesoNet 74.41 0.74 i
Whisper MesoNet 71.65 0.61 H
RawNet3 73.69 0.71
AcouSem-AFNet 78.10 0.79
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Fig.3: TB detection model evaluation. Left: Performance metrics across archi-
tectures with AcouSem-AFNet (bold) achieving the best accuracy (78.10%), and
AUC (0.79), second-best underlined. Right: ROC curves showing our model’s
(green) superior sensitivity-specificity balance versus baselines.

audio representation models for this specialized medical diagnostic task. The su-
perior performance of AcouSem-AFNet model can be attributed to several key
innovations: (1) The dual-stream architecture effectively leverages complemen-
tary information pathways, with the semantic stream (Whisper-large encoder)
capturing structured respiratory patterns while the acoustic stream (WavLM)
preserves critical temporal characteristics specific to TB-related sounds, (2) the
specialized integration backbone with squeeze-excitation mechanisms and resid-
ual connections successfully fuses these complementary features while maintain-
ing discriminative power, even with limited medical training data, and (3) the
AFMS-Res2MP blocks with targeted regularization in the backend network ef-
fectively prevent overfitting while preserving the model’s ability to detect subtle
TB acoustic signatures.

Our AcouSem-AFNet model demonstrates balanced gender performance with
an overall accuracy of 78.10%, achieving 76.01% for male subjects and 80.14%
for female subjects. This relatively small performance gap suggests that the
model effectively captures TB-related acoustic signatures which are independent
of gender-based physiological differences in cough characteristics. Regarding age-
related performance, we created four age bins to assess the generalizability of the
model: 18-34, 35-51, 52-68, and 69-85. Performance analysis reveals interesting
variations, with middle-aged groups (35-51 and 52-68) showing higher accuracy
(80.4% and 80.7%, respectively) compared to younger (75.6%) and elderly popu-
lations (69.7%). However, we observed a concerning trend in precision and recall
metrics for older age groups, particularly in the 52-68 bin, where precision drops
to 40.6% and recall to 40%, indicating greater difficulty in correctly identifying
TB-positive cases among older patients.

Clinical Significance: The 3% improvement in AUC and 2% gain in over-
all accuracy compared to the best baseline represent substantial progress in
respiratory-based TB screening capabilities. These improvements could trans-
late to meaningful clinical outcomes by reducing false negatives in TB screening
protocols, potentially enabling earlier intervention and treatment.
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Our experimental results conclusively demonstrate that the proposed AcouSem-
AFNet, a dual-stream architecture with specialized feature integration, outper-
forms existing approaches for TB detection from respiratory audio recordings.
The performance gains validate our hypothesis that capturing both semantic and
acoustic features in cough sounds is essential for accurate TB diagnosis, opening
promising avenues for non-invasive, cost-effective screening tools in resource-
limited settings.

6 Conclusion

In this paper, we presented a novel deep-learning framework for automated
TB detection through cough sound analysis. Our approach demonstrated supe-
rior performance on the CODA-TB challenge dataset, achieving state-of-the-art
results in classification accuracy and robustness. The key innovations include
our spectral representation technique and architecture optimization for acoustic
biomarker detection. Experimental results validate our method’s effectiveness
as a rapid, non-invasive TB screening tool, particularly valuable for resource-
limited settings. While our work shows promising results, future research direc-
tions include: (1) investigating multi-modal integration with clinical metadata,
(2) improving model interpretability for clinical adoption, and (3) validating per-
formance across diverse demographic populations. Our contribution establishes
a strong foundation for acoustic-based TB screening, potentially addressing crit-
ical gaps in global TB detection and management.
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