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Abstract. Segment Anything Model (SAM) adaptation has shown re-
markable performance in medical image segmentation, but typically re-
lies on large and precisely annotated datasets. However, acquiring such
dense annotation is a labor-intensive and time-consuming task that re-
quires significant expertise. An effective direction is to focus on sparse an-
notation, where only a few slices are annotated. However, sparse annota-
tions are insufficient for capturing the complete 3D anatomical structure.
To address this limitation, we innovatively leverage point cloud comple-
tion to generate robust volumetric shape from sparse annotation, offering
a promising solution to this challenge. In this paper, we propose a novel
Geometry-Aware SAM adaptation framework (namely GA-SAM) that
integrates point cloud shape generation module with cross-view segmen-
tation supervision mechanism. Specifically, we train a point cloud com-
pletion network to infer the 3D structure of the target anatomy. The gen-
erated point cloud shapes are then used to produce pseudo-labels, guiding
the adaptation of SAM via a geometry-aware shape constraints. Further-
more, we incorporate a cross-view supervision mechanism, leveraging
multi-view consistency to ensure reliable segmentation across different
planes. We demonstrate the effectiveness of our method on Pancreas-CT
dataset, surpassing the state-of-the-art SAM adaptation method by a
Dice score of 15.25% and significantly improving segmentation robust-
ness. Our code is available at https://github.com/Shumengl.I/GA-SAM.

Keywords: Medical Image Segmentation - Sparse Annotation - Foun-
dation Model - Point Cloud Completion.
1 Introduction

Recently, foundation models [9, 10, 18, 22, 30] for visual segmentation have gained
significant attention in medical imaging due to their strong generalization and
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Fig. 1. An example of triple-slice annotation and comparison of segmentation strate-
gies. It demonstrates the direct adaptation (right) exhibits a noticeable discrepancy
from the ground truth. In contrast, the point cloud generation followed by SAM adap-
tation (left) produces a closer result to the ground truth, highlighting the effectiveness
of point cloud completion in enhancing anatomical shape representation.

segmentation performance. As one of the most popular universal image seg-
mentation models, Segment Anything Model (SAM) [10] has been employed to
medical image segmentation by adaptation techniques under fully supervised [3,
5,7,14,16,17,23, 28] or semi-supervised [4,15,17,29] way. However, it remains
heavily dependent on precisely dense annotations from experienced radiologists,
making the annotation process expensive and time-consuming. For instance, with
the Pancreas-CT dataset [19], annotating just 10% of the samples for SAM adap-
tation still takes over 400 hours (assuming an experienced radiologist spends
10 minutes annotating each 512x512 slice). Therefore, we wonder, whether a
foundation model can be adapted with only few annotations while still achieving
comparable performance to that with extensive annotations?

Compared to simply reducing the number of full annotated volumes, which
often results in inferior results [1,26], sparse annotation [1,2,13,21,25,26] is a
more effective strategy within the same annotation budget. With sparse anno-
tation, fewer slices are labeled in each volume, but information is provided from
more volumes. Previous studies [1] have revealed that annotations from different
planes provide varied structural information. Building on this insight, we intro-
duce Triple-Slice Annotation, where a single annotated slice is selected from each
of the three planes (e.g., transverse, coronal, and sagittal), enabling the model
to integrate multi-view structural information.

However, sparse annotations alone may not capture the full 3D anatomical
structure. For example, when only a few slices are labeled per volume, the lim-
ited supervision is insufficient to establish global shape constraints, leading to
incomplete or imprecise object representations [25], as shown in Fig. 1. To ad-
dress this, it becomes essential to establish reliable shape constraints from sparse
annotations that guide the model to infer full structure information.

With the aforementioned goal, it is crucial to incorporate a representation
that can capture the full 3D anatomy. We recognize that point clouds provide
a natural and efficient way to represent 3D structures. Point cloud-based shape
modeling [27] enables the estimation of the complete geometry of objects from
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partial observations. PCN [27] pioneered learning-based point completion by di-
rectly performing reconstruction on the input points, while FSC [24] further
investigated the point cloud completion with only a few input points. In medi-
cal image segmentation, many targets, such as organs, share similar anatomical
shapes. This inherent regularity allows point cloud completion, guided by learned
shape priors, to infer the global 3D structure of an organ from sparse annota-
tions. Consequently, it could serve as a powerful mechanism for shape generation,
which offers an effective solution to the challenges of incomplete structural rep-
resentation caused by sparse annotations.

To this end, we propose a novel Geometry-Aware SAM adaptation frame-
work (namely GA-SAM) that effectively integrates point cloud shape modeling
with the SAM adaptation. Specifically, we introduce a point cloud completion
network trained on a medical shape dataset, MedShapeNet [11], to infer the
complete 3D structure of the target anatomy using only triple-slice annotation.
The predicted point cloud shapes are then employed to generate pseudo-labels
through voxel reconstruction, providing a structural guide for segmentation. We
introduce geometry-aware shape guidance, where the pseudo-labels serve as a
soft shape prior to enhance anatomical consistency. Furthermore, to effectively
leverage multi-view information, we introduce three independent branches for
three planes and establish a cross-view supervision mechanism. We use the con-
sistently predicted foreground regions predicted by two models to supervise the
third model to ensure the reliability of supervision. This cross-view supervision
strengthens the structural consistency across different views. To sum up, our
main contributions are illustrated as follows:

— A novel paradigm for triple-slice annotation, leveraging point cloud comple-
tion to generate robust volumetric shapes.

— A new geometry-aware guidance strategy, incorporating soft shape priors to
enhance shape awareness in segmentation.

— A cross-view supervision mechanism, leveraging multi-view consistency to
ensure reliable segmentation and enhance robustness.

We evaluate our framework on the Pancreas-CT dataset [19] and demon-
strate that point cloud shape generation provides an anatomically reliable and
structurally robust solution for triple-slice annotated medical image segmenta-
tion. Our method achieves significant performance improvements, with a Dice
score of 67.12%, surpassing state-of-the-art approaches under sparse annotation.

2 Method

2.1 Overview

The architecture overview of our GA-SAM framework is illustrated in Fig. 2.
The framework consists of two key components: (1) point cloud shape genera-
tion module and (2) cross-view foundational model adaptation module. First,
we generate a point cloud representation from three mutually orthogonal anno-
tated slices and reconstruct their corresponding complete 3D shapes by a point
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Fig. 2. Overview of our proposed GA-SAM. The segmentation models F®¥, F(*)| and
F(©) are trained alternately. In the example shown, F® acts as the student model,
learning from the supervision provided by the other two views.

cloud completion network. Next, we serve the generated 3D shapes as volumet-
ric pseudo-labels to enhance the spatial awareness of the segmentation model.
To fully exploit the triple-slice annotations, the segmentation model performs
fine-grained predictions from three views and we employ a cross-view adaptation
strategy to process transverse, sagittal, and coronal planes collaboratively.

2.2 Triple-Slice Annotation

Acquiring dense annotations for 3D volumetric data is costly and time-consuming.
To alleviate this burden, we introduce triple-slice annotation, a sparse yet effec-
tive annotation approach. Instead of annotating full 3D volumes, we annotate
only one slice with visible targets for each of the transverse, sagittal, and coronal
planes. This approach provides information about the target structure from dif-
ferent perspectives. Formally, let the training set consist of N volumetric scans
{X1, Xo, ..., Xn}, where X; € REXWXD For each volume X;(1 < i < N), we

annotate one slice per orthogonal plane, denoted as Xi(t), Xi(s), Xi(c), where ¢, s,

¢ correspond to the transverse, sagittal, and coronal planes, respectively. Their
corresponding segmentation masks are given by Yi(t), Yi(s)7 YZ.(C).

2.3 Point Cloud Shape Generation

To generate 3D anatomical shapes from sparsely annotated slices, we introduce
a pre-trained point cloud completion network to reconstruct their correspond-
ing 3D shapes. By leveraging it trained on external anatomical datasets (e.g.,
MedShapeNet [11]), we generate a high-quality shape representation.
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Shape Generation from Triple-slice Annotations Given a volumetric scan
X, with triple-slice annotation, we first extract a set of foreground boundary
points from the annotated masks {Y;(t),Yi(s)7Y;(c)} to capture the anatomical
contour. The resulting boundary point set then serves as an initial point cloud
representation P;P = J,cp, o o B(Y;(J)) C R3, where B(-) denotes the bound-
ary extraction operation, which identifies the edge points of the annotated mask.
The set of P;"* can be denoted as {P;5"*°} /<, where K is the total number
of points, and each point P is a 3D coordinate. Next, we normalize the
point cloud by aligning its centroid u; to the origin and rescaling it based on the
maximum Euclidean distance d; from the centroid, ensuring that the normalized
coordinates lie within a consistent scale for point cloud completion. Specifically,

sparse
Pi,j

the normalized point is P;?arse = di_# for each point, and the normalized

point cloud is obtained as PP = { PR}

Enlightened by the shape completion scheme presented in [24, 27], we leverage
a point completion network to predict the missing regions and generate a dense
point cloud representation. The point completion network adopts an encoder-
decoder structure [24]. To achieve this, we train the shape completion model on a
large-scale external dataset, MedShapeNet [11], and simulate to uniformly sam-
ple points from three slices. It enables capturing organ morphology patterns and
referring plausible 3D structures from triple-slice annotated inputs. As with [24],
we train the point completion network consisting of a feature extractor and a de-
coder. The feature extractor is designed to separately capture the extensive and
salient feature representation, while the decoder refines and expands this repre-
sentation to generate a dense and coherent point cloud Plense = GPe(P;P*s¢)
where GP¢(-) represents the trained point completion network, which refines and
densifies the sparse input. The resulting P2¢"s® provides a structurally consis-
tent and anatomically plausible 3D shape, which serves as the foundation for
generating shape-aware pseudo-labels in our segmentation framework. Since the
point cloud are normalized before, we rescal the generated point cloud Pidense
back to its original space by applying the inverse of the normalization process
to each point Pl-‘};nse = Pﬁ;nse -d; + p; in P3"se. This ensures that the generated
shape remains anatomically plausible and aligned with the input data.

Voxel Reconstruction and Mask Generation Once the generated point
cloud Pidense is obtained, we convert it into a voxel representation that aligns
with the original volume space. Specifically, we discretize the point cloud into a
binary voxel grid V; using a point-to-voxel mapping function:

1, if (z,y,2) € Pidense,

0, otherwise.

Vi) = { )

Since direct voxelization may introduce discrete voxels and sparse coverage,
we apply a morphological refinement operation R(-), including hole filling and
smoothing, to generate the final binary mask M; = F(V;). The reconstructed
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mask M, serves as a shape-aware pseudo-label, integrating global anatomical
priors into our segmentation network.

2.4 Cross-View Foundation Model Adaptation

For adaptation, we freeze the image encoder of SAM [10], adopt LoRA adapta-
tion [8] by adding a bypass, and fine-tune the mask decoder.

Geometry-aware Shape Guidance The generated point cloud provides a
plausible estimation of the target shape, but it lacks voxel-level correspondence
with the original image due to the limited supervision. To incorporate global
shape constraints into the segmentation process, we encode M; into a signed
distance field (SDF) [6,12] with a soft shape prior, enabling geometry aware-
ness rather than voxel-wise supervision. We compute the SDF S; of M;, where
each voxel’s value represents the signed distance to the nearest boundary of the
target object. The SDF is normalized to the range [—1,1]. To encourage the
segmentation model to align with the shape prior, we develop a geometry-aware
loss:

'Cpc = ”Sz - 5'1”2 + )‘tODO’CtOPO(Sia Si)v (2)

where S; is the SDF computed from M, and S; is the predicted SDF from
the model’s segmentation output. The topology consistency loss Liop, denote
the discrepancies of the number of connected components. Aypo is & weighting
factor balancing the two terms and we set it as 0.01 empirically.

Cross-View Supervision To effectively leverage multi-view information, we
establish three independent branches, each responsible for processing slices along
one of the three axes. Specifically, the segmentation models F(), F(*) and F(©)
are trained on the transverse, sagittal, and coronal views, respectively. Take the
example of model F®*),| we denote the supervised loss Lsup:

Lowp = LeFED(X), V) + L FD(X,), V1), (3)

where Lcg is the cross-entropy loss and Lpjce is the Dice loss.

To enhance the 3D structural understanding of the model, we introduce a
cross-view supervision mechanism, where predictions from two views provide
guidance for training the third. At each training step, one of the three models is
randomly selected as the student model to receive supervision from the other two
models. Take the example of F(*) as the student model. The regions where both
models consistently predict the presence of the target structure are identified as
the foreground, to supervise the student model’s segmentation. The prediction
fusion of the two models is Y; = I (FO(X;) = 1 AF(X;) = 1), where I(*) is an
indicator function. The cross-view consistency loss is denoted as:

Ecross = ”F(t) (Xl) - Y~;||2 (4)

The total loss is £ = Lgup + Lpc + AcrossLeross; Where Agross acts as a time-
dependent Gaussian weighting function.
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Table 1. Comparison Result on Pancreas-CT dataset.

‘ Metrics
Method Venue

| Dice (%) 1 Jaccard (%) 1 HD (voxel) | ASD (voxel) |

3D2DCT [2] |MICCAI23|45.34+17.71 31.00+14.83 30.47+£12.68  8.87+6.04
SAMed [28] Arxiv’23 |45.53+11.08 30.13+£9.19  39.34+9.74  15.23+4.34
SemiSAM [29] | Arxiv’'23 | 40.52+8.69 25.77+6.61  47.61+£8.68  18.77+3.47
H-SAM [5] CVPR’24 |47.64+12.61 32.15+10.65 38.66+£11.49 14.07+£5.18
CPC-SAM [17] [MICCAT’24|51.87+12.18 35.91+£10.95 39.11+9.51 14.76+4.21
GA-SAM (Ours)| this paper [67.12+9.74 51.28+10.56 27.51+12.76 8.47+4.70

3 Experiments

3.1 Dataset and Implementation Details

Pancreas-CT Dataset We conduct our experiments on the NIH Pancreas-CT
dataset [19], which consists of 82 contrast-enhanced 3D abdominal CT scans.
Following previous work [20], we apply the same data splits and pre-processing
strategies. All volumes are reshaped to [128, 128, 128] with linear interpolation.

Implementation Details All the experiments are implemented in PyTorch
on the Tesla V100 and NVIDIA RTX A6000 GPUs. For point cloud comple-
tion, we train the point completion network with the pancreas data from Med-
ShapeNet [11], which contains 745 pancreas shapes. It is trained by the Adam
optimizer with an initial learning rate of 0.0001. For segmentation, we conduct
all the experiments based on the “ViT-B" version of SAM, resize the positional
embeddings [28] to [256, 256] and interpolate each slice as the same size. We
adopt LoRA adaptation [8] and the rank of LoRA is set to 4 for efficiency and
performance optimization. Following [28], we use the AdamW optimizer with
weight decay set to 0.9, 0.999, and 0.1. The data augmentations include random
flip, rotation, and pixel-wise transforms (Gaussian blur, brightness, contrast,
gamma). The point completion and cross-view supervision are only in the train-
ing phase. For inference, we retain the segmentation model trained on transverse
plane, which is often used in clinical diagnostics, and point completion network
and segmentation models from other views are eventually discarded.

3.2 Comparison with SOTA methods

We compare our approach with several state-of-the-art methods on the Pancreas-
CT dataset in Table 1. We employ Dice, Jaccard, the 95% Hausdorfl Distance
(HD), and the Average Surface distance (ASD) measurements to quantitatively
evaluate the performance. First, we evaluate our method against the three-plane
version of 3D2DCT [2], making it compatible with our Triple-Slice Annotation.
We also compare against models fine-tuned from SAM, including SAMed [28§]
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Fig. 3. Visual examples of segmentation results on Pancreas-CT dataset.

Table 2. Effectiveness of Each Component on Pancreas-CT dataset.

‘ Component ‘ Metrics
|Leross Lpe | Dice (%) 1+ Jaccard (%) + HD (voxel) | ASD (voxel) |

Baseline| X X [45.53+11.08 30.13+9.19  39.34+9.74  15.23+4.34

w/o CV| X v |51.80+10.56 35.62+9.45 40.10£10.05 14.46+4.31

w/o PC| v X 159.564+10.25 43.12+9.85 36.65+£13.45 11.94+5.01
v v

Method

Ours | 67.12+£9.74 51.28+10.56 27.51+£12.76 8.47+4.70

and H-SAM [5]. Additionally, we evaluate SAM-based semi-supervised models,
SemiSAM [29] and CPC-SAM [17], with the labeled and unlabeled slices as
labeled and unlabeled samples, respectively. Our GA-SAM outperforms these
SAM-based methods with significant improvements, demonstrating the benefits
of our geometry-aware shape guidance techniques. The visual examples on the
Pancreas-CT dataset are shown in Fig. 3, which demonstrates that our approach
effectively maintains segmentation reliability under sparse annotation conditions.
Compared to other methods, our framework produces more accurate boundaries
and better capturing the anatomical shape and structure.

3.3 Ablation Study

To evaluate the effectiveness of different components of our GA-SAM frame-
work, we conduct ablation experiments on removing key modules. Specifically,
we investigate the impact of point cloud geometry-aware shape guidance £, and
cross-view supervision Leross by comparing three variants: the baseline without
PC or CV, removing point cloud guidance (i.e., w/o PC), and removing cross-
view supervision (i.e., w/o CV). As shown in Table 2, the results demonstrate
that both PC and CV significantly contribute to performance improvements. The
cross-view supervision bolsters the performance from 45.53% to 59%, demon-
strating that it effectively leverages multi-view information. Furthermore, we
observe that the removal of point cloud guidance leads to a significant drop in
performance, highlighting the importance of shape priors.
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4 Conclusion

In this work, we proposed a novel geometry-aware SAM adaptation frame-
work GA-SAM that integrates point cloud completion to generate anatomical
shapes under sparse annotations. The generated point cloud transformed into
voxel representations, serves as a soft shape prior to guiding the adaptation of
SAM through geometry-aware shape guidance. Additionally, we incorporated a
cross-view supervision mechanism, ensuring segmentation reliability by enforc-
ing multi-view consistency. The result of the Pancreas-CT dataset validates the
effectiveness of our framework.
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