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Abstract. Unpaired Cone-beam CT (CBCT)-to-CT translation is piv-
otal for radiotherapy planning, aiming to synergize CBCT’s clinical prac-
ticality with CT’s dosimetric precision. Existing methods, limited by
scarce paired data and registration errors, struggle to preserve anatomi-
cal fidelity—a critical requirement to avoid incorrect diagnosis and inade-
quate treatments. Current CycleGAN-derived approaches risk structural
distortions, while diffusion models oversmooth high-frequency details vi-
tal for dose calculation in the reverse diffusion. In this paper, we propose
the Anatomy-Conserving Schrödinger Bridge (ACSB), a novel unpaired
medical image translation framework leveraging entropy-regularized op-
timal transport to disentangle modality-specific artifacts from anatomy.
We incorporate a carefully designed generator, Anatomy-Conserving vi-
sion transformer (AC-ViT) to integrate multi-scale anatomical priors via
attention-guided feature fusion. We further adopt frequency-aware opti-
mization targeting radiotherapy-critical spectral components. Extensive
experiments on the dataset demonstrate the superiority of the proposed
ACSB, showcasing excellent generalization over different anatomically
distinct regions. Code: https://github.com/Lalala-iks/ACSB

Keywords: Unpaired CBCT-to-CT translation · Schrödinger Bridge ·
Anatomical fidelity.

1 Introduction

Image-guided radiotherapy (IGRT) has revolutionized precision cancer treat-
ment by enabling real-time anatomical tracking during radiation delivery[6,14].
Central to IGRT workflows, cone-beam CT (CBCT) serves as the primary imag-
ing modality for frequent scans due to its clinical advantages, including lower
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radiation exposure and greater portability compared to traditional CT[26]. How-
erver, CBCT suffers from primarily lower image quality due to scatter artifacts
and noise[8]. This degradation in image quality can lead to inaccurate diagno-
sis. Consequently, Synthetic CT (sCT) generation[1] techniques aim to bridge
this gap by translating CBCT into CT-equivalent images, combining CBCT’s
accessibility with CT’s dosimetric precision.

Deep learning has revolutionized medical image translation for sCT genera-
tion. Early supervised approaches (e.g., U-Net [21] variants) relied on pixel-wise
losses but required strictly paired CBCT-CT, which are time-consuming and
prone to errors in clinical practice. Generative Adversarial Networks (GANs) [9]
introduced adversarial training to enhance image realism, while CycleGAN[27]-
based methods enabled unpaired translation through cycle-consistency constraints.
However, GANs still suffer from mode collapse and gradient instability. While
diffusion models have shown impressive results in high-quality image generation
through iterative denoising processes, they still struggle to fully recover anatom-
ical details through learned reverse diffusion[10,23,7,11,20]. Despite these fea-
tures, current methods are limited by a critical oversight: they focus primarily
on global intensity matching rather than preserving radiation-sensitive anatom-
ical features, which poses potential risks in radiotherapy applications.

In this paper, we propose ACSB, an Anatomy-conserving Schrödinger Bridge
framework. We first establish a direct mapping for unpaired CBCT-to-CT trans-
lation using optimal transport theory, then incorporate an anatomy-conserving
vision transformer to integrate multi-scale features, while a frequency-constraint
component is added to prioritize anatomical details, improving the preservation
of critical structures. Our main contributions are threefold: (1) We pioneer the
adaptation of Schrödinger Bridge theory [24,5] to cross-modal medical transla-
tion, establishing an effective unified framework that simultaneously addresses
unpaired learning and precise anatomical preservation; (2) We design a novel gen-
erator architecture that enforces anatomical perception by synergizing spectral
grouping and local-global hierarchy; (3) We demonstrate unprecedented robust-
ness across different anatomically distinct regions (chest, head and neck (H&N)).

2 Method

An overview of the proposed method is shown in Fig. 1. To go for unpaired
CBCT-to-CT translation, we incorporates Schrödinger Bridge into our ACSB
framework that directly connects two arbitrary distributions via entropy optimal
transport and interpolation mechanism (IPM). Furthermore, our ACSB enforces
anatomy-conserving by local-global hierarchy in our anatomy-conserving vision
transformer (AC-ViT) generator. Below, we first present how Schrödinger Bridge
handles unpaired distributions, then elaborate the IPM and AC-ViT, followed
by detailed descriptions of training and generation.
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Fig. 1. Overview of the our ACSB framework. (a) The Interpolation Mechanism (IPM)
applied in both training and generation stages, showing the progressive transformation
from CBCT to CT; (b) The Anatomy-Conserving Vision Transformer (AC-ViT) archi-
tecture, featuring a local-global hierarchical design and multi-scale feature alignment
for preserving anatomical details.

2.1 Unpaired Translation via Entropy Optimal Transport

Conventional diffusion models assume Gaussian noise priors, limiting their appli-
cability to medical imaging where data distributions are non-Gaussian and often
unpaired. Instead, we adopt the Schrödinger Bridge framework that directly con-
nects πCBCT and πCT through the optimal transport plan Q∗, minimizing both
control energy and distributional divergence by [16]:

min
Q

EQ

[∫ 1

0

1

2
∥u(t, xt)∥2dt

]
+ λDKL(Q ∥ Wτ ) s.t. x0 ∼ πCBCT, x1 ∼ πCT,

(1)
where u(t, xt) is parameterized by the proposed AC-ViT generator Gθ (see Sec-
tion 2.3), and Wτ is the Wiener measure with variance τ .

2.2 Interpolation Mechanism (IPM)

To achieve a smooth trajectory bridging πCBCT and πCT, we propose an Inter-
polation Mechanism (IPM) that recursively refines intermediate samples xtk by
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blending the current state and the generator’s prediction, plus a controlled noise
injection. Specifically, given the generator output x1(xtk) = Gθ(xtk , tk), the next
state xtk+1

is sampled via:

xtk+1
∼ N

(
αk+1 x1(xtk) +

(
1− αk+1

)
xtk , σ

2
k+1 I

)
, (2)

where
αk+1 =

tk+1 − tk
1− tk

, σ2
k+1 = τ αk+1

(
1− αk+1

)
. (3)

Here, αk+1 balances anatomical structure preservation from xtk and the pre-
dicted target domain features in x1(xtk), while σ2

k+1 controls the injected noise
level via the diffusion parameter τ .

Notably, IPM is utilized both in the training stage (for random time-step
refinement) and in the generation stage (for multi-step iterative sampling).

2.3 Anatomy-Conserving Vision Transformer (AC-ViT)

As illustrated in Fig. 1(b), our AC-ViT generator is designed to ensure multi-
scale feature alignment while preserving critical anatomical details in CBCT-
to-CT translation. In AC-ViT, the input CBCT xtk first passes through two
convolution layers with downsampling. For embedding phase, instead of stan-
dard positional embeddings [25], we adopt spectral-aware positional embedding
based on FFT [2] to suppress grid artifacts and preserve key diagnostic details. A
dynamic conditional encoding is adopted to integrate transport dynamics (time
step t and noise level σ) via channel-wise affine transformations and concatena-
tion.

To refine both global anatomical consistency and local structural details, the
combined token sequence is progressively refined through a stack of 12 Trans-
former Encoder blocks. Each block follows a sequential architecture to combine
global attention and localized processing. First, the input tokens undergo Layer
Normalization (LN), followed by Multi-Head Self-Attention (MHSA) to capture
long-range spatial dependencies. The output is then combined with the original
input via residual connections. Formally, for encoder input f (i)k (i = 1, 2, ..., 12):

u(i) = MHSA(LN(f
(i)
k )) + f

(i)
k . (4)

Then, we adopt a Locally Feed-Forward Network (LFFN) to enhance local spa-
tial coherence. Here, the input is temporarily reshaped into a 2D feature map
(Seq2Img), processed by two 1×1 convolutions along with a depth-wise 3×3
convolution, then flattened back into a token sequence (Img2Seq). This local-
ized processing stage is preceded by another LN and similarly integrated with
residual connections, reinforcing feature stability across layers:

f
(i+1)
k = LFFN(LN(u(i))) + u(i). (5)

Lastly, a Linear and a symmetric lightweight decoder, mirroring the encoder’s
structure are adopted to reconstruct the f (13)k to generate the final CT image.
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2.4 ACSB Training & Generation Stage

Training Stage As illustrated in Fig. 1(a), we train Gθ (AC-ViT) and a patch-
level discriminator [21] Dϕ jointly, augmented by anatomical regularization and
frequency-domain constraints. Specifically, we randomly choose a time-step ti to
optimize, use the IPM (Eq. (2)) for i iterations (starting from x0 ∼ πCBCT) to
obtain xti . Then we get x1(xti) = Gθ(xti , ti) and sample x1 ∼ πCT meanwhile.
We employ an Optimal Transport loss LOT to map πCBCT and πCT as follows:

x1(xti) = Gθ(xtN , tN ), LOT = E∥xti − x1(xti)∥2. (6)

The patch-based discriminator Dϕ distinguishes genuine CT samples from syn-
thesized ones by:

Ladv = Ex1
[logDϕ(x1)] + E[log(1−Dϕ(xti))]. (7)

To conserve anatomical information, we use NCE loss for regularization and
frequency-aware loss for dual-domain constraints in frequency-level. We enforce
semantic alignment between the input CBCT x0 and the synthetic CT (x1(xti)
through contrastive learning in patch-level by:

LpatchNCE = −E
[
log

exp(ψ(x0) · ψ(x1(xti))∑
xti exp(ψ(x0) · ψ(x1(xti))

]
, (8)

where ψ(·) extracts features from AC-ViT’s multi-scale layers. In order to guide
the model to focus more on the difficulty to sythesize frequency details in CT
images, we further incorporating the focal frequency loss [15] into the indentity
mapping when choosing x1 ∼ πCT as the input, thereby mitigating the issue of
high-frequency detail loss in synthesized CT images by:

Lfreq = ∥F(x1(xtk))−F(x1)∥1 + ∥∥F(x1(xtk))∥1 − ∥F(x1)∥1∥2, (9)

where F denotes fast Fourier transform (FFT) [3], enforcing both phase and
magnitude alignment. The full objective of ACSB becomes:

LACSB = Ladv + λOTLOT + λpatchNCELpatchNCE + λfreqLfreq, (10)

where λOT, λpatchNCE, λfreq are trade-off hyperparameters.

Generation Stage During inference, as shown in Fig. 1(a), we run a multi-
step iterative process over the time steps {tk}Nk=0 ⊂ [0, 1]. We initialize xt0 =
x0 ∼ πCBCT, and at each step: we first use the generator Gθ to produce an
intermediate CT image x1(xtk) = Gθ(xtk , tk), and then apply the IPM to obtain
the next state xtk+1

by interpolating between xtk and x1(xtk), plus noise injection
with variance σ2

k+1I. After N iterations, we arrive at xtN ∼ Gθ(xtN ).



6 K. Shi et al.

Table 1. Quantitative comparison on intra-region evaluation.

H&N → H&N Chest → Chest
SSIM↑ PSNR↑ MAE↓ RMSE↓ SSIM↑ PSNR↑ MAE↓ RMSE↓

Pix2Pix [13] 0.944 31.968 2.178 6.627 0.912 30.789 2.431 7.470
CycleGAN [27] 0.949 33.067 1.962 6.228 0.920 30.853 2.290 7.540

CUT [19] 0.951 32.997 1.978 6.051 0.931 31.381 2.054 7.089
SynDiff [18] 0.917 29.154 3.994 9.568 0.921 28.463 4.342 10.774
ResViT [4] 0.9630.9630.963 33.483 1.753 5.716 0.928 31.128 2.041 7.207
UNSB [16] 0.957 33.350 1.885 5.878 0.932 31.187 2.080 7.286

ACSB (Ours) 0.962 33.79133.79133.791 1.6551.6551.655 5.5695.5695.569 0.9330.9330.933 31.45731.45731.457 2.0182.0182.018 7.0217.0217.021

OursPix2Pix CycleGAN CUT Target CTUNSBSynDiff ResViTCBCT
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Fig. 2. Visual comparison for Intra-region evaluation by different models.

3 Experiments & Results

3.1 Datasets and Implementation

We evaluate our method on two expert-curated clinical datasets acquired from a
tertiary referral center. Each dataset comprises strictly registered paired CBCT-
CT 3D scans from distinct anatomical regions: H&N and chest. The 3D scans
were segmented into 2D slices along the Z-axis. After quality screening, they
were partitioned into a training set (2,232 pairs) and a test set (480 pairs).

To rigorously validate the anatomical conserving adaptability of our ACSB
framework, we established a dual-phase evaluation protocol: (1) Intra-region
evaluation. Models were trained and tested within the same anatomical re-
gion (e.g., H&N→ H&N). This setting allows direct measurement of the model’s
modality capability without interference from anatomical variations. (2) Cross-
region evaluation. Models trained on one region (e.g., H&N→ Chest) were
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Table 2. Quantitative comparison on cross-region evaluation.

H&N → Chest Chest → H&N
SSIM↑ PSNR↑ MAE↓ RMSE↓ SSIM↑ PSNR↑ MAE↓ RMSE↓

Pix2Pix [13] 0.882 28.147 3.724 10.096 0.898 26.825 4.891 11.735
CycleGAN [27] 0.904 27.108 4.723 12.114 0.945 28.749 3.845 9.875

CUT [19] 0.900 28.408 3.840 10.078 0.943 29.190 3.473 9.415
SynDiff [18] 0.854 22.42 9.528 20.284 0.814 17.848 20.921 33.318
ResViT [4] 0.901 27.963 3.503 10.430 0.897 26.125 4.273 12.988
UNSB [16] 0.897 26.369 5.184 13.080 0.947 29.133 3.030 9.386

ACSB (Ours) 0.9160.9160.916 29.43729.43729.437 3.2033.2033.203 9.1219.1219.121 0.9490.9490.949 29.64029.64029.640 2.9802.9802.980 8.8358.8358.835

OursPix2Pix CycleGAN CUT Target CTUNSBSynDiff ResViTCBCT
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h
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Fig. 3. Visual comparison for Cross-region evaluation by different models.

directly applied on another. This paradigm is to examine the model’s ability to
generalize across anatomical mismatches while preserving region-agnostic tissue
characteristics.

The model is implemented in PyTorch (v2.4.1 with CUDA 12.1) and run on
an NVIDIA RTX 3090 GPU (24 GB VRAM). During training, the paired CBCT-
CT images are randomly shuffled, with random cropping applied to resize each
image to 256×256 pixels. We use the Adam optimizer with an initial learning
rate of 2e-4, which is fixed for the first 100 epochs and then linearly decays over
the next 100 epochs, for a total of 200 epochs and a batch size of 4.

3.2 Comparison with SOTA

We compare our ACSB with six state-of-the-art synthesis methods spanning
three paradigms: CNN[17]-based methods (Pix2Pix [13], CycleGAN [27], CUT
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Table 3. Ablation study results for the times of downsampling and Lfreq.

# of downsampling Lfreq SSIM↑ PSNR↑ MAE↓ RMSE↓

4 × 0.909 29.051 2.862 9.242
2 × 0.961 33.689 1.717 5.592
2 ✓ 0.9620.9620.962 33.79133.79133.791 1.6551.6551.655 5.5695.5695.569

[19]), diffusion-based methods (SynDiff [18], UNSB [16]), and one transformer-
based method (ResViT [4]). To ensure consistency, each network of these meth-
ods was retrained from publicly available implementations to achieve its best
synthesis results. The Mean Absolute Error (MAE), Root Mean Square Error
(RMSE), Structural Similarity Index (SSIM) [22] and Peak Signal-to-Noise Ratio
(PSNR) [12] are adopted for quantitive evaluation.

Intra-region Evaluation Table 1 presents quantitative results for all methods
evaluated under intra-region conditions, clearly demonstrating that our method
outperforms other methods. Visual comparisons in Fig. 2 further reveal that
our method precisely transfers modality-specific characteristics (note that our
method effectively suppresses the scanner-specific artifacts commonly observed
in baseline methods as indicated by the blue arrows) while preserving critical
anatomical features (red arrows).

Cross-region Evaluation As shown in Table 2, our method establishes new
benchmarks in cross-region adaptation with siginficant improvements across all
metrics. This breakthrough in generalization capability is visually in Fig. 3,
where most of the competing methods exhibit 2 failure patterns: (1) structural
disintegration in anatomy level (red arrows), and (2) pathological hallucination of
non-existent tissue interfaces (blue arrows). These failures arise from inadequate
cross-domain feature disentanglement—a challenge effectively addressed by our
AC-ViT generator, demonstrating our method’s unique capability to disentangle
modality-specific information from anatomical features.

3.3 Ablation Study

We investigate the effectiveness of downsampling times, and frequency-aware
loss Lfreq, as shown in Table 3. It indicates that reducing the downsampling
times significantly improved results, underscoring the advantage of retaining
higher-resolution features. Furthermore, adding Lfreq to this 2-downsampling
setting yielded additional gains, suggesting that frequency-domain constraints
effectively preserve fine structural information and enhance overall equality.



Unpaired CBCT-to-CT Translation via ACSB 9

4 Conclusion

In this paper, we propose ACSB, a novel unpaired CBCT-to-CT translation
framework that directly bridges arbitrary medical imaging domains via entropy-
regularized optimal transport. Unlike methods requiring paired data or Gaussian
priors, ACSB learns a stochastic trajectory between CBCT and CT distribu-
tions while preserving anatomical fidelity through AC-ViT and frequency-aware
loss. The AC-ViT architecture captures multi-scale anatomical features, and the
frequency-aware loss enforces alignment of high-frequency components critical
for diagnostic details. Comprehensive experiments results on H&N and chest
datasets demnostrate the effectiveness and excellent generalization capability.
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