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Abstract. Unpaired Cone-beam CT (CBCT)-to-CT translation is piv-
otal for radiotherapy planning, aiming to synergize CBCT’s clinical prac-
ticality with CT’s dosimetric precision. Existing methods, limited by
scarce paired data and registration errors, struggle to preserve anatomi-
cal fidelity—a critical requirement to avoid incorrect diagnosis and inade-
quate treatments. Current CycleGAN-derived approaches risk structural
distortions, while diffusion models oversmooth high-frequency details vi-
tal for dose calculation in the reverse diffusion. In this paper, we propose
the Anatomy-Conserving Schrodinger Bridge (ACSB), a novel unpaired
medical image translation framework leveraging entropy-regularized op-
timal transport to disentangle modality-specific artifacts from anatomy.
We incorporate a carefully designed generator, Anatomy-Conserving vi-
sion transformer (AC-ViT) to integrate multi-scale anatomical priors via
attention-guided feature fusion. We further adopt frequency-aware opti-
mization targeting radiotherapy-critical spectral components. Extensive
experiments on the dataset demonstrate the superiority of the proposed
ACSB, showcasing excellent generalization over different anatomically
distinct regions. Code: https://github.com/Lalala-iks/ACSB

Keywords: Unpaired CBCT-to-CT translation - Schrédinger Bridge -
Anatomical fidelity.

1 Introduction

Image-guided radiotherapy (IGRT) has revolutionized precision cancer treat-
ment by enabling real-time anatomical tracking during radiation delivery[6T4].
Central to IGRT workflows, cone-beam CT (CBCT) serves as the primary imag-
ing modality for frequent scans due to its clinical advantages, including lower
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radiation exposure and greater portability compared to traditional CT[26]. How-
erver, CBCT suffers from primarily lower image quality due to scatter artifacts
and noise[8]. This degradation in image quality can lead to inaccurate diagno-
sis. Consequently, Synthetic CT (sCT) generation[l] techniques aim to bridge
this gap by translating CBCT into CT-equivalent images, combining CBCT’s
accessibility with CT’s dosimetric precision.

Deep learning has revolutionized medical image translation for sCT genera-
tion. Early supervised approaches (e.g., U-Net [2]] variants) relied on pixel-wise
losses but required strictly paired CBCT-CT, which are time-consuming and
prone to errors in clinical practice. Generative Adversarial Networks (GANs) [9]
introduced adversarial training to enhance image realism, while CycleGAN|[27]-
based methods enabled unpaired translation through cycle-consistency constraints.
However, GANSs still suffer from mode collapse and gradient instability. While
diffusion models have shown impressive results in high-quality image generation
through iterative denoising processes, they still struggle to fully recover anatom-
ical details through learned reverse diffusion[I023[7ITTI20]. Despite these fea-
tures, current methods are limited by a critical oversight: they focus primarily
on global intensity matching rather than preserving radiation-sensitive anatom-
ical features, which poses potential risks in radiotherapy applications.

In this paper, we propose ACSB, an Anatomy-conserving Schrédinger Bridge
framework. We first establish a direct mapping for unpaired CBCT-to-CT trans-
lation using optimal transport theory, then incorporate an anatomy-conserving
vision transformer to integrate multi-scale features, while a frequency-constraint
component is added to prioritize anatomical details, improving the preservation
of critical structures. Our main contributions are threefold: (1) We pioneer the
adaptation of Schrédinger Bridge theory [24[5] to cross-modal medical transla-
tion, establishing an effective unified framework that simultaneously addresses
unpaired learning and precise anatomical preservation; (2) We design a novel gen-
erator architecture that enforces anatomical perception by synergizing spectral
grouping and local-global hierarchy; (3) We demonstrate unprecedented robust-
ness across different anatomically distinct regions (chest, head and neck (H&N)).

2 Method

An overview of the proposed method is shown in Fig. [Il To go for unpaired
CBCT-to-CT translation, we incorporates Schrédinger Bridge into our ACSB
framework that directly connects two arbitrary distributions via entropy optimal
transport and interpolation mechanism (IPM). Furthermore, our ACSB enforces
anatomy-conserving by local-global hierarchy in our anatomy-conserving vision
transformer (AC-ViT) generator. Below, we first present how Schrédinger Bridge
handles unpaired distributions, then elaborate the IPM and AC-ViT, followed
by detailed descriptions of training and generation.
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(a) Anatomy-Conserving Schrodinger Bridge (b) Architecture of AC-ViT Module
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Fig. 1. Overview of the our ACSB framework. (a) The Interpolation Mechanism (IPM)
applied in both training and generation stages, showing the progressive transformation
from CBCT to CT; (b) The Anatomy-Conserving Vision Transformer (AC-ViT) archi-
tecture, featuring a local-global hierarchical design and multi-scale feature alignment
for preserving anatomical details.

2.1 Unpaired Translation via Entropy Optimal Transport

Conventional diffusion models assume Gaussian noise priors, limiting their appli-
cability to medical imaging where data distributions are non-Gaussian and often
unpaired. Instead, we adopt the Schrodinger Bridge framework that directly con-
nects mocpor and wor through the optimal transport plan Q*, minimizing both
control energy and distributional divergence by [16]:

1
. 1 .
I%HEQ |:/ 2||’U,(t,$t)||2dt:| + )\DKL(Q || \WY% ) s.t. o ~ TCBCT, X1 ~ TTCT,
0
(1)

where u(t, z;) is parameterized by the proposed AC-ViT generator Gy (see Sec-
tion [2.3), and W™ is the Wiener measure with variance 7.

2.2 Interpolation Mechanism (IPM)

To achieve a smooth trajectory bridging mcpcT and woT, we propose an Inter-
polation Mechanism (IPM) that recursively refines intermediate samples z;, by
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blending the current state and the generator’s prediction, plus a controlled noise
injection. Specifically, given the generator output =1 (z:,) = Go(zs,, tx), the next
state xy, , is sampled via:

Ty, ~ N(akH x1(xe,,) + (1 - oz;H_l) Tty U,%_H I), (2)
where ; ;
k+1 — tk

Qp+1 = ;—7@’ Oy =Tagp (1— Vht1)- (3)

Here, ay41 balances anatomical structure preservation from z;, and the pre-
dicted target domain features in z(z¢, ), while o7 41 controls the injected noise
level via the diffusion parameter 7.

Notably, IPM is utilized both in the training stage (for random time-step
refinement) and in the generation stage (for multi-step iterative sampling).

2.3 Anatomy-Conserving Vision Transformer (AC-ViT)

As illustrated in Fig. (b), our AC-ViT generator is designed to ensure multi-
scale feature alignment while preserving critical anatomical details in CBCT-
to-CT translation. In AC-ViT, the input CBCT z;, first passes through two
convolution layers with downsampling. For embedding phase, instead of stan-
dard positional embeddings [25], we adopt spectral-aware positional embedding
based on FFT [2] to suppress grid artifacts and preserve key diagnostic details. A
dynamic conditional encoding is adopted to integrate transport dynamics (time
step t and noise level o) via channel-wise affine transformations and concatena-
tion.

To refine both global anatomical consistency and local structural details, the
combined token sequence is progressively refined through a stack of 12 Trans-
former Encoder blocks. Each block follows a sequential architecture to combine
global attention and localized processing. First, the input tokens undergo Layer
Normalization (LN), followed by Multi-Head Self-Attention (MHSA) to capture
long-range spatial dependencies. The output is then combined with the original
input via residual connections. Formally, for encoder input f,gl) (i=1,2,...,12):

u® = MHSA(LN(f{")) + £ (4)

Then, we adopt a Locally Feed-Forward Network (LFFN) to enhance local spa-
tial coherence. Here, the input is temporarily reshaped into a 2D feature map
(Seq2Img), processed by two 1x1 convolutions along with a depth-wise 3x3
convolution, then flattened back into a token sequence (Img2Seq). This local-
ized processing stage is preceded by another LN and similarly integrated with
residual connections, reinforcing feature stability across layers:

(D) — LEFN(LN(u®)) + u®, (5)

Lastly, a Linear and a symmetric lightweight decoder, mirroring the encoder’s
structure are adopted to reconstruct the f}§13) to generate the final CT image.
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2.4 ACSB Training & Generation Stage

Training Stage As illustrated in Fig. (a), we train Gy (AC-ViT) and a patch-
level discriminator [2I] Dy jointly, augmented by anatomical regularization and
frequency-domain constraints. Specifically, we randomly choose a time-step ¢; to
optimize, use the IPM (Eq. (2)) for ¢ iterations (starting from zog ~ mcper) to
obtain x¢,. Then we get x1(zt,) = Go(x,,t;) and sample x1 ~ mor meanwhile.
We employ an Optimal Transport loss Lo to map meper and wer as follows:

z1(ze,) = Go(wey,tn), Lot = Ellzy, — z1(ze,)|I. (6)

The patch-based discriminator Dy distinguishes genuine CT samples from syn-
thesized ones by:

Laav = Eq, [log Dy (21)] + Ellog(1 — Dy (2+,))]. (7)

To conserve anatomical information, we use NCE loss for regularization and
frequency-aware loss for dual-domain constraints in frequency-level. We enforce
semantic alignment between the input CBCT z( and the synthetic CT (z1(zy,)
through contrastive learning in patch-level by:

exp(ip(xo) - P(x1(21,))
22w, exp(Y(wo) - P (x,)) ]|

(8)

‘CpatchNCE =-E log

where 9(-) extracts features from AC-ViT’s multi-scale layers. In order to guide
the model to focus more on the difficulty to sythesize frequency details in CT
images, we further incorporating the focal frequency loss [I5] into the indentity
mapping when choosing x1 ~ e as the input, thereby mitigating the issue of
high-frequency detail loss in synthesized CT images by:

Lireq = |F (21 (21,)) — F(xn)ll + [IF (@ (@)l = IF @)z (9)

where F denotes fast Fourier transform (FFT) [3], enforcing both phase and
magnitude alignment. The full objective of ACSB becomes:

LACSB = £adv + )\OTKOT + )\patChNCE‘CpatchNCE + Afreqﬁfreqy (1())

where Ao, ApatchNCE, Afreq are trade-off hyperparameters.

Generation Stage During inference, as shown in Fig. (a), we run a multi-
step iterative process over the time steps {tx}2_, C [0,1]. We initialize z;, =
xo ~ moBoT, and at each step: we first use the generator Gy to produce an
intermediate CT image z1(z:, ) = Go(2y, , tx), and then apply the IPM to obtain
the next state x4, , by interpolating between x;, and x1(zy, ), plus noise injection
with variance U,%HI. After N iterations, we arrive at z;y ~ Go(2¢y ).
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Table 1. Quantitative comparison on intra-region evaluation.

H&N — H&N Chest — Chest
SSIM+t PSNRT MAE| RMSE/|SSIMt PSNRT MAE] RMSE]

Pix2Pix [I3] | 0.944 31.968 2.178 6.627 | 0.912 30.789 2.431 7.470
CycleGAN [27]| 0.949 33.067 1.962 6.228 | 0.920 30.853 2.290 7.540
CUT [19] 0.951 32.997 1.978 6.051 | 0.931 31.381 2.054 7.089
SynDiff [I8] | 0.917 29.154 3.994 9.568 | 0.921 28.463 4.342 10.774
ResViT [4] |0.963 33.483 1.753 5.716 | 0.928 31.128 2.041 7.207
UNSB [16] | 0.957 33.350 1.885 5.878 |0.932 31.187 2.080 7.286
ACSB (Ours) | 0.962 33.791 1.655 5.569 | 0.933 31.457 2.018 7.021

CBCT Pix2Pix  CycleGAN CUT SynDiff UNSB ResViT Ours Target CT

H&N—-H&N

Chest—Chest

Fig. 2. Visual comparison for Intra-region evaluation by different models.

3 Experiments & Results

3.1 Datasets and Implementation

We evaluate our method on two expert-curated clinical datasets acquired from a
tertiary referral center. Each dataset comprises strictly registered paired CBCT-
CT 3D scans from distinct anatomical regions: H&N and chest. The 3D scans
were segmented into 2D slices along the Z-axis. After quality screening, they
were partitioned into a training set (2,232 pairs) and a test set (480 pairs).

To rigorously validate the anatomical conserving adaptability of our ACSB
framework, we established a dual-phase evaluation protocol: (1) Intra-region
evaluation. Models were trained and tested within the same anatomical re-
gion (e.g., H&N— H&N). This setting allows direct measurement of the model’s
modality capability without interference from anatomical variations. (2) Cross-
region evaluation. Models trained on one region (e.g., H&N— Chest) were



Unpaired CBCT-to-CT Translation via ACSB 7

Table 2. Quantitative comparison on cross-region evaluation.

H&N — Chest Chest — H&N
SSIM+t PSNRT MAE| RMSE/|SSIMt PSNRT MAE] RMSE]

Pix2Pix [I3] | 0.882 28.147 3.724 10.096 | 0.898 26.825 4.891 11.735
CycleGAN [27]| 0.904 27.108 4.723 12.114 | 0.945 28.749 3.845 9.875
CUT [19] 0.900 28.408 3.840 10.078 | 0.943 29.190 3.473 9.415
SynDiff [I8] | 0.854 22.42 9.528 20.284 | 0.814 17.848 20.921 33.318
ResViT [4] | 0.901 27.963 3.503 10.430 | 0.897 26.125 4.273 12.988
UNSB [I6] | 0.897 26.369 5.184 13.080 | 0.947 29.133 3.030 9.386
ACSB (Ours) | 0.916 29.437 3.203 9.121 | 0.949 29.640 2.980 8.835

CBCT Pix2Pix  CycleGAN CUT SynDiff UNSB ResViT Ours Target CT

Chest—H&N

H&N—Chest

Fig. 3. Visual comparison for Cross-region evaluation by different models.

directly applied on another. This paradigm is to examine the model’s ability to
generalize across anatomical mismatches while preserving region-agnostic tissue
characteristics.

The model is implemented in PyTorch (v2.4.1 with CUDA 12.1) and run on
an NVIDIA RTX 3090 GPU (24 GB VRAM). During training, the paired CBCT-
CT images are randomly shuffled, with random cropping applied to resize each
image to 256x256 pixels. We use the Adam optimizer with an initial learning
rate of 2e-4, which is fixed for the first 100 epochs and then linearly decays over
the next 100 epochs, for a total of 200 epochs and a batch size of 4.

3.2 Comparison with SOTA

We compare our ACSB with six state-of-the-art synthesis methods spanning
three paradigms: CNNJ[I7]-based methods (Pix2Pix [I3], CycleGAN [27], CUT
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Table 3. Ablation study results for the times of downsampling and Ly .cq.

4 of downsampling L ¢, SSIM? PSNRT MAE| RMSE|

4 x 0909 29.051 2.862 9.242
2 x 0.961 33.689 1.717 5.592
2 v 0962 33.791 1.655 5.569

[19]), diffusion-based methods (SynDiff [I8], UNSB [16]), and one transformer-
based method (ResViT [4]). To ensure consistency, each network of these meth-
ods was retrained from publicly available implementations to achieve its best
synthesis results. The Mean Absolute Error (MAE), Root Mean Square Error
(RMSE), Structural Similarity Index (SSIM) [22] and Peak Signal-to-Noise Ratio
(PSNR) [12] are adopted for quantitive evaluation.

Intra-region Evaluation Table[I] presents quantitative results for all methods
evaluated under intra-region conditions, clearly demonstrating that our method
outperforms other methods. Visual comparisons in Fig. [2] further reveal that
our method precisely transfers modality-specific characteristics (note that our
method effectively suppresses the scanner-specific artifacts commonly observed
in baseline methods as indicated by the blue arrows) while preserving critical
anatomical features (red arrows).

Cross-region Evaluation As shown in Table [2] our method establishes new
benchmarks in cross-region adaptation with siginficant improvements across all
metrics. This breakthrough in generalization capability is visually in Fig. [3]
where most of the competing methods exhibit 2 failure patterns: (1) structural
disintegration in anatomy level (red arrows), and (2) pathological hallucination of
non-existent tissue interfaces (blue arrows). These failures arise from inadequate
cross-domain feature disentanglement—a challenge effectively addressed by our
AC-ViT generator, demonstrating our method’s unique capability to disentangle
modality-specific information from anatomical features.

3.3 Ablation Study

We investigate the effectiveness of downsampling times, and frequency-aware
loss Lyfreq, as shown in Table @ It indicates that reducing the downsampling
times significantly improved results, underscoring the advantage of retaining
higher-resolution features. Furthermore, adding L f,eq to this 2-downsampling
setting yielded additional gains, suggesting that frequency-domain constraints
effectively preserve fine structural information and enhance overall equality.
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4 Conclusion

In this paper, we propose ACSB, a novel unpaired CBCT-to-CT translation
framework that directly bridges arbitrary medical imaging domains via entropy-
regularized optimal transport. Unlike methods requiring paired data or Gaussian
priors, ACSB learns a stochastic trajectory between CBCT and CT distribu-
tions while preserving anatomical fidelity through AC-ViT and frequency-aware
loss. The AC-ViT architecture captures multi-scale anatomical features, and the
frequency-aware loss enforces alignment of high-frequency components critical
for diagnostic details. Comprehensive experiments results on H&N and chest
datasets demnostrate the effectiveness and excellent generalization capability.
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