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Abstract. During the process of brain aging, the changes of white mat-
ter structural connectivity are closely correlated with the cognitive traits
and brain function. Genes have strong controls over this transition of
structural connectivity-altering, which influences brain health and may
lead to severe dementia disease, e.g., Alzheimer’s disease. In this work, we
introduce a novel deep-learning diagram, an oblique genomics mixture of
experts(OG-MoE), designed to address the prediction of brain disease di-
agnosis, with awareness of the structural connectivity changes over time,
and coupled with the genomics influences. By integrating genomics fea-
tures into the dynamic gating router system of MoE layers, the model
specializes in representing the structural connectivity components in sep-
arate parameter spaces. We pretrained the model on the self-regression
task of brain connectivity predictions and then implemented multi-task
supervised learning on brain disorder predictions and brain aging predic-
tion. Compared to traditional associations analysis, this work provided
a new way of discovering the soft but intricate inter-play between brain
connectome phenotypes and genomic traits. It revealed the significant
divergence of this correlation between the normal brain aging process
and neurodegeneration.
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1 Introduction

Both normal brain aging and pathological aging are mysterious processes, in
which not only genetic traits play important roles but are subject to accumulative

* Data used in preparation of this article were obtained from the Alzheimer’s Disease
Neuroimaging Initiative (ADNI) database (adni.loni.usc.edu).
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environmental influences [14]. Evidence shows that the normal aging processes
are coupled with the changes in the brain’s white matter (WM) connectivity
characteristics, while the heterogeneous connectivity characteristics adaptations
have also been observed throughout neurodegenerative disorders during brain
aging[4, 3,8, 15]. For instance, closely related to the pathological brain aging pro-
cess, Alzheimer’s disease (AD) and its prodromal clinical stage - mild cognitive
impairment (MCI) are known as neurodegenerative stages which are concurrent
with disruptions and alterations in brain structural connectivity (SC) [10, 17,13,
19,1, 26,28, 22|. In the view of genomics, genome-wide association studies have
identified numerous genomic loci which significantly linked to the AD, and there
are potential unrevealed causal genes and variants that characterized the disease
via diverse pathways[18, 23,11, 21, 14]. To summarize, the underlying hypothesis
is that genomics has strong control over the molecular level connectivity between
different brain regions and partially facilitates the corresponding SCs. However,
the precise mechanisms governing genomic-SC level regulation and how SC aging
relates to AD pathology remain less elucidated. The main challenge rests on how
to comprehensively understand the intricate causal and additive relationships in
the triad and merge the multimodality data to contribute to the early prediction
of brain aging disorders.

An effective way to fuse these diverse modalities is to obliquely incorporate
the genomics features into the analysis of structural connectivity. Inspired by
sparse MoE architectures|20, 2, 12], this article introduce the oblique genomics
MoE(OG-MoE) (Figure 1), a sparse expert variant of the encoder-only trans-
former architecture that takes the brain’s SC features as input. The "Oblique
genomics" stands for the unique individual genomic profiles which used to repre-
senting the genomics information. The sparse genomic profile features are added
to the model stem by a stand-alone gate function, acting as dynamic bias to
influence the selection of experts of SC features. The clinical goal of OG-MoE
is predicting CN(Normal) /MCI/AD research groups from subjects’ SC features
with the help of genomic information. During the training, the model uses a
multi-task training diagram to predict the diagnosis label and the SC changes
label caused by brain aging. This allows the model to detect the divergences in
the SC changes caused by the differences between normal aging and pathological
aging under a genomics view. In addition to the benefit of efficiency gained by the
employment of highly specialized experts, the oblique incorporation of genomic
modalities also evades possible harmful interferences by directly concatenating
the features from diverse sources.

We summarize our main innovations and contributions as follows:

1. Unlike imaging genetic association analyses, this work takes the imaging
modality (SCs) as the main feature and uses genomic profile to control the
self-regression of image modality. The approach mitigates the substantial
representational disparity and sematic distinction between genomic features
and brain-connectivity features, facilitating a flexible integration of the two
modalities.
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2. The model considered the inputs of multi-visit data from Alzheimer’s Disease
Neuroimaging Initiative (ADNI) dataset[16]. By construction of the true
paired SC sequence data of two age points and the negative counterparts,
the model is designed to address two tasks simultaneously: predict clinical
research group and SC changes over time. which potentially facilitates the
detection of SC alterations of normal brain aging and pathological aging.

3. As the alternation of vanilla MoE structure, OG-MoE improved the sparse
experts’ framework with a shared expert, which is free from genomic bias to
capture the environmental influences on SC features.
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Fig. 1: Framework of the OG-MoE. The model is based on Bert-style transformer
encoders and the mixtures of sparse expert diagram with the special gating
router, which combines genomics features. The model takes formulated image
modality (paired SC sequences) and SNVs features as input. The model is able
to learn the normal aging and the neurodegenerative disorders symbols from
SC changes with genomic influences.

2 Methodology

2.1 Data Collection and Processing

Data collection In this study, the total number of subjects was 631 (324 fe-
males, 307 males; 75.34 + 7.39 years). Each subject had corresponding genomic
records and has no diagnostic group transition between different visits. Within
these subjects, 463 individuals have more than one visit, and after a quality
check, there is only one DTI image selected for each visit. A total of 1703 diffu-
sion tensor imaging (DTT) MR images were collected. The subjects with multiple
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visits and their images (CN: 875, MCI:716, AD:112) on different visits are chosen
as the training set (80%) and validation set (20%). The rest of the subjects with
a solo visit are set as test data (CN: 103, MCI:51, AD:7).

Imaging data process Here, we utilize the brain’s structural connectomes
defined by probabilistic tracts using diffusion magnetic resonance imaging data
on two prevalent used brain atlases: HCP-MMP [9] with 360 regions (cortical)
of interest (ROIs) and the Desikan-Killiany [5] atlas with 78 ROIs (cortical and
sub-cortical). First, the standard preprocessing procedures have been applied,
similar to Zhang et al. [27], including eddy correction, bias correction, and brain
extraction. The preprocessed images were further analyzed using DSI-Studio
pipelines 24, 25]. After fiber tracking and registration to the Atlas, the brain’s
SC was established by estimating the fiber count between the ROIs of the two
atlas, as S € RV*M (N =78, M = 360). Then the Log-normalization has been
cast to the structural connectivity matrix .S.

Genomic data process Genomic data of the candidate subjects are acquired
and merged from multiple ADNI research phases. The raw SNVs data have been
downloaded and processed by Plink software with the following steps: quality
control (QC), high missingness removal, Hardy-Weinberg equilibrium (HWE)
filter, and linkage disequilibrium (LD) pruning. The SNVs data from the ADNI
dataset across multiple phases have been merged and filtered. The filtered SNVs
data are later relocated to the reference genome GRCh38.p14 and combined with
gene annotations using genome location, by refering to the NCBI’s database.
Eventually, 216 important SN'Vs are found to be closely related to the pre-defined
candidate functional genes of brain aging and neurodegeneration to represent the
sparse genomics profile(Table 3). The final genomics profile vector is calculated
as g € R?*¢ (G = 216).

2.2 Model overview

The Oblique Genomics MoE (OG-MoE) adapts the Transformer Encoder ar-
chitecture similar to Bert [6] and MoE [20]. We innovatively integrate a set of
recent deep learning advancements, including: 1) We design a multi-task learn-
ing (MTL) framework to enhance the performance of several interrelated tasks
by integrating information from subjects’ diagnostic labels, age-related alter-
ations in brain SC, and the self-regression patterns inherent in SC features. 2)
We constructed paired SC sequence data, either from the paired with true aging
relationship or the noisy paired data (Section 2.3), to facilitate the MTL frame-
work. 3) The MoE gating module of the framework incorporated the genomics
single nucleotide variants (SNVs) features inside the gating router for the ex-
perts’ selection of the SC sequence tokens(Section 2.6). 4) The training of the
model consists of two parts: the pre-train phase (Section 2.4) and the supervised
MTL training phase (Section 2.5).
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Fig. 2: Detailed design of OG-MOE: (a) paired SC sequence (b) generate neg-
ative samples of SC sequence (¢) the genomics-guided gating router (d) the
contrastive loss of outputs from different experts

2.3 Construction of Paired data

Difference from the traditional model that only focuses on SC data from a single
time point. We challenged the OG-MoE model by creating positive and nega-
tive paired data. For the positive paired SC sequences, the SC SC*€ of a sub-
ject’s earlier visit and one from the later visit SC' were concatenated to form a
sequence-like input(Fig. 2(a)).

Seq? = concat(SC*,SCY), Seq’ € R*N*M | N =78 M =360 (1)

For the negative paired SC sequences, the later visit SC! was replaced by the
noised SC SC"oise, generated from SC€. The Laplace noise sampling with the
zero-inflated method was adopted to mimic the true sparse distribution of the
absolute variance between the SC from different visits. (Fig. 2(b))

Seq" = concat(SC®, SC"oise), Seq” € R*N*M N =78 M =360 (2)

2.4 Self-supervised Pretraining

During this training phase, the paired SC sequences are viewed token-wised on
the first dimension, then random masks are applied on the sequence level to the
input. The model was optimized to make a reconstruction of those masked tokens
at the output, during which the trainable position embedding parameters were
added to the SC sequences. This trainable position embedding acts as the ROI
indicator (Fig. 1). With SC sequence denoted as Seq, genomics vectors denoted
as V9, and mask indicator m;, this process can be listed as:
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, o , , [MASK], ifm; =1,
Seq" = (a, x5, ..., ), z; = (3)
i, ifmizo.

z = MLP(MSA(LN(zl_l;maskAtt)) + z1), €=1,...1" (4)
2§ = GMoE((MSA(LN(2))) + zj—1));v9), j=1"...,L (5)

Lyse = Z‘ ‘2

Where the MSA, LN, MLP, GMoFE, Dy stand for the multi-head attention
layers, Layer-norm, MLP layers, genomic MoE layers, and decoder layers respec-
tively. And the mask?™ is the causal attention mask added in the multi-head
attention layers, to mask out the attention between tokens from the SC sequence
of different visits.

x; — Dg(zt)

2.5 Supervised MTL Training

Based on the pre-trained model, the supervised MTL phase consecutively tuned
the model on two tasks. By padding two classification tokens CLS® and CLS!
to the sequence, the model is aimed at predicting the correct research groups
(CN/MCI/AD) and positive/negative labels of the constructed SC sequence.

Yre = Linear(CLSY), Yp/N = Linear (CLS}) (7)
Les = —Adual * KL(Yra: yra) + KL(y}/N;yP/N) (8)

2.6 Sparse Mixture of Experts and Oblique Genomics Gating

By revisiting the MoE’s gating network (router) mechanisms, we insert the ge-
nomic feature vectors into the gating functions as a dynamic bias to influence the
scores of the input tokens (Fig. 2(c)). The score logits Zjo4its can be computed
below, T is the temperature hyperparameter. 29 is logits of the genomic profile
vector v9 after the genomic encoder.

T

029, i=1,...,N, (9)

_ T i —1
Zlogits = We Ztoken + T w

An additional contrastive loss between the outputs of the shared expert and
the outputs of genomics biased routed experts is set to differentiate the func-
tion of these two groups of experts. Following the convention of Penotype =
Genomic + Env, we encourage the shared experts (free from genomics informa-
tion) to accumulate more environmental feats of SC features (Fig. 2(d)). The
zp and z{; are the output of shared experts and i’s genomic gated experts, with
Acons as the scale factor.

Leons = Acons * exp(sim(zg, mean(zé;))), i=1,..., Negperts, (10)
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The contrastive loss L.,,s and a gate ce-loss of MoE were added into the main
model by a compound auxiliary Loss functions during training. The indirect for-
wards and backward pass algorithm can be formulated as follows.(Algorithm 1)

Algorithm 1 Compound Auxiliary Loss Forward & Backward Pass
Input: x, Aux Loss, Contrastive Loss
Output: y: identical to z in the forward pass
Forward Pass:
1. Awux Loss: Gate CE Loss
2. Contrastive Loss: Cosine similarity:(expertE, expertG)
3. Input: z, Aux Loss, Contrastive Loss
4. Store requires grad <— Aux Loss.requires grad.
requires grad <— Contrastive Loss.requires grad.
5. Return: y ==z
Backward Pass:
1. Input: Vy, the upstream gradient of y (equivalent to Vz).
2. Initialize VAux Loss < 0; VContrastive Loss < 0.
3. Set VAux Loss = 1; VContrastive Loss = 1
4. Return: Vy, VAux Loss, VContrastive Loss

3 Experiment

3.1 Model Implementation

The model was empirically set to consist of 19 transformer encoder layers with
8 attention heads and 2 OG-MoE layers to balance the model capacity and
computing load. The number of experts was set to 8 and the top 2 experts were
set for each token, which achieved the best auxiliary ce-loss during pre-train.
The hidden dimension of the model is 128, the temperature 7 of OG-MoE gating
function to be 0.07, the hyperparameter Ag,4; to be 0.3, and the hyperparameter
Lcons to be 0.05. We employ the Adam optimizer, with a learning rate of le-6.
The pre-train and supervised training of OG-MoE takes approximately 4 hours
on one NVIDIA A6000 GPU.

3.2 Effectiveness of Self-regression Pretraining

The pretraining stage optimized the OG-MoE by mask self-regression learning.
The mean squared error metrics of the masked SC vectors and the ground truth
were computed and then compared with the mean variance of SC in population
data to test the effectiveness of pretraining. The following results show the mean
squared error of the predicted masked SC tokens and ground truth in training,
validation, and test sets, compared with the variance of SC of the ADNI popu-
lation (batch size scaled). (Table. 1)
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Table 1: Effectiveness of self-regression pretraining of OG-MoE model
Metrics Train (Batch) Validation (Batch) Test (Batch) SC Var.

MSE 0.007 0.035 0.114 0.598
MSE(CN) 0.006 0.038 0.109 0.594
MSE(MCTI) 0.006 0.032 0.127 0.596
MSE(AD) 0.007 0.034 0.102 0.580

3.3 Model Performance

After pretraining, the model was trained on two multi-task scenarios: one was
the prediction of CN/MCI with SC pairing labels, and the other one was the
prediction of MCI/AD with SC pairing labels. Results were compared with other
baseline models.(Table. 2)

Table 2: Results of model performance. "SC": structural connectivity features
used in training; "Genomic": genomic features used in training.
Model Acc.(Avg.) F1(Avg.) Acc.(CN/MCI) Acc.(MCI/AD)

SVM(SC) 0.671 0.581 0.625 0.718
SVM(Genomic)  0.607 0.281 0.546 0.668
Linear(Genomic) 0.318 0.247 0.573 0.623
VIT(SC)[7] 0.693 0.601 0.552 0.804
GO-MoE 0.739 0.701 0.668 0.812

3.4 Experts Selection Pattern

The activation patterns across tasks remain analogous, while the activation pat-
terns on the genomics features and the SC token features show significant dif-
ferences. However, divergence of the activation patterns of these two kinds of
features can be observed between the subsequent classification training (Fig.3).

4 Conclusion

In this work, we propose a novel deep-learning framework, oblique genomics
mixture of experts(OG-MoE), designed to predict brain disease diagnoses while
accounting for temporal changes in structural connectivity and integrated ge-
nomic influences. The model successfully integrated the genomics feature into
the imaging modality in brain disease diagnosis prediction. With the innovation
added in the MoE diagram and multi-phases and multi-task training strategy,
the OG-MoE performs superior to the traditional models and shows strong in-
terpretability.
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Fig. 3: Difference of SC token experts activation and genomics experts

Table 3: Compose of the genomic profiles: candidate genes symbols and corre-
sponding gene-functions.

Gene Functions Gene Symbols

Aging NFE2L2, GPX1, PPARGC1A, TERT, ATG5, SOD2, PARK2,
WRN, TPP1, CAT, BLM, IGF1R, DNMT1

Apoptosis BAK1, TNFRSF10B, TNFRSF10A, FAS, CASP7, TNFRSF1A,
BCL2, BID

Sugar Metabolism SLC2A1, GCK, IGF1, IRS2

Inflammation S100A8, NLRP3, IL1B, IL1RN, MYDS88, TLR2, TNFAIP3,

STAT3, TGFB1
Neuron Development HTT, SNCA, C9orf72, BDNF

AD Critical CR1, BIN1, SLC4A10, INPP5D, EPHA3, CLNK, HS3STI,
SLC39A8, MEF2C, NMES, SEMA3A, CTTNBP2, CNTNAP2,
DPYSL2, PTK2B, NUAKI1, MYO16, DAAMI1, CCDCS8S8C,
SLC24A4, APH1B, MAPT(Tau), CELF4, ALPK2, CASS4,
APOE
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