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Abstract. Brain decoding is a pivotal topic in neuroscience, aiming to
reconstruct stimuli (e.g., image) from brain activity (e.g., fMRI). How-
ever, existing methods rely on subject-specific modules and flatten 3D
voxel grids, limiting generalization and discarding spatial information.
To address these issues, we propose MindLink, a scalable cross-subject
brain decoding framework designed to link multiple subjects into a single
model by extracting subject-invariant features while preserving the spa-
tial structure of 3D fMRI data. This is achieved by parcellating 3D fMRI
into standardized cubic patches processed by a 3D Vision Transformer for
informative representations. Domain adversarial training enhances cross-
subject generalizability by extracting subject-agnostic features within a
single model structure. We also introduce a two-level alignment strat-
egy that effectively bridges fMRI and stimuli image embeddings through
instance-level consistency and flexible token-level matching. MindLink
achieves comparable or even better performance over state-of-the-art
methods on the NSD dataset with a constant parameter size across sub-
jects and demonstrates strong adaptability to new subject.

Keywords: Cross-subject Brain Decoding · Domain Adversarial Train-
ing · Multi-modal Alignment

1 Introduction

Brain decoding is important for understanding the intricate mechanisms of hu-
man cognition and perception. It aims to interpret neural activities given certain
conditions, and functional magnetic resonance imaging (fMRI) facilitates such
analysis by providing detailed neural activity in vivo non-invasively with high
spatial and temporal resolution [11]. The decoding component relies on recent
advances in generative models [5, 7, 14] for reconstructing sensory and cognitive
representations. While recent works have demonstrated a significant potential in
brain decoding, high variability in neural activity across subjects highlight the
need for more robust and generalizable brain decoding approaches [3].

Conventionally, brain decoding has been limited to subject-specific applica-
tions [12, 15, 19], i.e., models trained on the brain activity of a specific subject
could not be adopted for others. While efforts have been made for cross-subject
brain decoding for generality [22, 24], existing approaches still rely on subject-
specific modules, increasing model complexity as the number of subjects grows.
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This poses a significant challenge by limiting scalability for larger populations
in real-world scenarios. Moreover, in prior studies [12, 15, 19, 22, 24], 3D voxel
grids are flattened into a vector during the fMRI preprocessing stage. This sim-
plification discards spatial information and limits the model’s ability to capture
complex spatial relationships inherent in neural activity patterns.

To address the two major issues above, we propose MindLink, a scalable
cross-subject brain decoding framework, designed to link multiple subjects into
a single model while preserving spatial structure. MindLink achieves this by par-
cellating 3D fMRI into standardized cubic patches, which are processed by a 3D
Vision Transformer [9] to preserve spatial information. Domain adversarial train-
ing is used to extract subject-agnostic features while maintaining a single model
structure to avoid subject-specific biases. Afterward, we introduce a two-level
alignment strategy to bridge the gap between fMRI and image embeddings. At
the instance level, fMRI embeddings are aligned with pretrained image embed-
dings in scale and direction, ensuring compatibility of image generation without
fine-tuning. At the token level, we introduce a cross-attention mechanism dy-
namically matches fMRI and image tokens, capturing context and preventing
misalignment. By jointly leveraging instance-level consistency and token-level
flexibility, our approach achieves accurate and coherent image reconstructions.

To this end, our main contributions are summarized as follows: 1) We
present MindLink, which links multiple subjects with a single model to extract
subject-invariant features while preserving the spatial structure of 3D fMRI. 2)
We propose a two-level alignment strategy that effectively bridges fMRI and
image embeddings through instance-level consistency and flexible token-level
matching. 3) Our method achieves comparable or even better performance on
the Natural Scenes Dataset (NSD), maintaining a constant parameter size across
subjects and demonstrating strong adaptability to new subjects.

Related Work on Brain Decoding Recent approaches in brain decoding
focus on aligning brain activity and stimuli within pretrained embedding spaces
using regression [12,19] or contrastive learning [15]. As the previous methods fol-
low per-subject-per-model paradigm, cross-subject brain decoding methods have
been proposed, which extract subject-invariant features through cyclic fMRI re-
construction mechanism [22] or ridge regression [24]. Nevertheless, these methods
either require subject-specific parameters [22,24] or face efficiency issues due to
fine-tuning large language model (LLM) [16], moreover, all the previous meth-
ods discard spatial information in the brain [12, 15, 19, 22, 24]. In contrast, we
preserve spatial structure while ensuring efficient cross-subject generalization by
parcellating 3D fMRI into standardized cubic patches and using a single model.

2 Method

2.1 Space-preserving 3D fMRI Data Processing

fMRI data captures neural activity by measuring blood-oxygen-level-dependent
(BOLD) changes in 3D voxel grids. However, traditional preprocessing methods
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Fig. 1. Overview of MindLink. (a) 3D fMRI preprocessing standardizes brain volumes
into cubic patches. (b) 3D fMRI Encoder Eb is trained to extract subject-invariant
fMRI embeddings. The fMRI projector P then projects fMRI embeddings into image
latent space, which is utilized to reconstruct images through stable diffusion model.

typically flatten this 3D structure into 1D vectors [12, 15, 19, 22, 24], leading
to significant loss of spatial structural information. To address this challenge,
we propose a minimal preprocessing strategy that preserves spatial structure
through ROI extraction, zero-padding and patching, as illustrated in Fig. 1a.

Given an original 3D fMRI voxel grid Bs
ori ∈ RXs×Ys×Zs of a subject s, we

first extract the “nsdgeneral” brain regions of interest (ROI), which contain voxels
most responsive to visual stimuli. The data is then divided into cubic patches of
size P = r3, with zero-padding applied to include all voxels within the ROI. To
standardize the representation across subjects, we unify the extracted patches
so that each subject shares the same set of patches. This process results in
patched data B ∈ RL×P , where L denotes the number of patches common to all
subjects. By enforcing a standardized patch structure, this approach preserves
the spatial organization of BOLD signals, allowing a single model to be trained
across subjects without requiring subject-specific modules.

2.2 Model Architecture: MindLink

Fig. 1b illustrates the overall model architecture, which is trained in an end-to-
end manner to extract subject-invariant fMRI embeddings and align them with
image embeddings for visual stimuli reconstruction. The preprocessed fMRI data
B, combined with 3D positional encoding, is passed into a 3D fMRI encoder Eb,
producing fMRI embeddings b = Eb(B) ∈ RL×d. A masked autoencoder frame-
work is applied, where a decoder D reconstructs masked portions of B to ensure
the embeddings preserve spatial structure while capturing essential brain activity
patterns. Simultaneously, a subject classifier Sc is introduced with domain ad-
versarial training to discard subject-specific variations, making the embeddings
more generalizable across subjects. To facilitate alignment with image embed-
dings, the fMRI embeddings b are projected into a shared latent space using
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an fMRI projector P as b̃ = P(b) ∈ RNI×d with the same dimension as image
embeddings z = EI(I) ∈ RNI×d from an image encoder such as IP-Adapter
Plus [25]. A two-level alignment strategy refines b̃ to establish fine-grained cor-
respondences with z, effectively capturing visual information.

During inference, the aligned fMRI embeddings b̃ replace the image embed-
dings z as conditions for a pretrained generative model, i.e., Stable Diffusion [14].
reconstructing images that reflect the perceived visual stimuli of individuals.

Masked Voxel Modeling fMRI exhibits spatial redundancy due to the brain’s
structural organization, where adjacent regions process similar information [3,
17]. To leverage this, we propose Masked Voxel Modeling, a self-supervised frame-
work that reconstructs missing voxels from partially masked fMRI data, learning
robust neural representations. Given preprocessed fMRI data B, the model min-
imizes the MSE reconstruction loss Lrec, formulated as:

Lrec = ∥D (Eb(B ⊙M))−B ⊙ (1−M)∥22 , (1)

where M ∈ {0, 1}N is a binary mask with random masking, and ⊙ is element-
wise dot product. B ⊙M represents the visible patches of the input.

Domain Adversarial training The fMRI embedding b inherently contains
subject-specific variations due to individual neural patterns, which degrade the
quality of global visual reconstructions. To eliminate such variations while pre-
serving image-relevant features, we employ domain adversarial training. Specif-
ically, we introduce a subject classifier Sc and apply adversarial training using
a gradient reversal layer (GRL) [4], which inverts the gradient sign between Eb
and Sc. The subject adversarial loss Lsubj is defined as:

Lsubj = ℓce (s,Sc(Eb(B))) , (2)

where ℓce indicates the cross-entropy. The GRL ensures that Sc learns subject
identity while Eb is adversarially trained to discard subject-specific information.

Two-Level fMRI-Image Alignment. (Instance-level Alignment) Pretrained
Stable Diffusion [14] is adopted to generate images conditioned on image em-
beddings z from IP-Adapter Plus [25]. To utilize this pretrained model without
fine-tuning, we align projected fMRI embeddings b̃ with image embeddings z in
both scale and direction to ensure compatibility. To achieve this, we minimize
the MSE between b̃i and the corresponding zi for the i-th fMRI-image pair as
follows:

Lalign =
1

N

N∑
i=1

∥∥∥b̃i − zi

∥∥∥2 , (3)

where N is the number of data samples. This ensures compatibility with Stable
Diffusion, enabling effective image reconstruction without fine-tuning.

(Token-level Alignment.) The image token embeddings z extracted by IP-
Adapter Plus has NI = 16 tokens, which exhibit interdependencies. To leverage
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this characteristic, we introduce a cross-attention-based token-level alignment
mechanism that enables soft matching between fMRI and image token embed-
dings. Instead of enforcing strict positional correspondences, each fMRI token
embedding dynamically attends to all image token embeddings, capturing their
contextual dependencies in a more flexible manner. For the i-th image-fMRI pair,
the j-th token of fMRI token embedding b̃ji , and its corresponding cross-modal
representation oji is computed via attention αj,k

i between the j-th fMRI token
embedding and k-th image token embedding as:

oji =

NI∑
k=1

αj,k
i (zki V ), αj,k

i = softmax

(
(b̃jiQ)(zki K)T√

d

)
, (4)

where Q,K, V ∈ Rd×d are learnable matrices. To further refine the alignment,
we apply a local alignment loss Llocal, which leverages contrastive learning to
maximize the similarity between fMRI token embedding b̃ji and its corresponding
cross-modal embedding oji , formulated as:

Llocal = − 1

2NNI

N∑
i=1

NI∑
j=1

log
exp(sim(b̃ji , o

j
i )/τ)∑NI

k=1 exp(sim(b̃ji , o
k
i )/τ)

+ log
exp(sim(oji , b̃

j
i )/τ)∑NI

k=1 exp(sim(oji , b̃
k
i )/τ)

,

(5)
where τ is a temperature hyperparameter. This flexibility captures the contex-
tual dependencies among visual tokens, preventing misalignment when semanti-
cally related tokens occur at different positions.

Overall objective Our model is trained by combining all the loss terms as:

Ltotal = λ1Lrec + λ2Lsubj + λ3Lalign + λ4Llocal, (6)

where λ1, λ2, λ3, and λ4 are hyperparameters.

3 Experiments

3.1 Experimental Setup

Dataset and Preprocessing. We conducted experiments on the Natural Scenes
Dataset (NSD) [1], containing high resolution 7-Tesla fMRI scans paired with
visual stimuli from MS-COCO dataset [10]. Among the eight subjects available,
we used four subjects (subj01, subj02, subj05, and subj07) who completed all
sessions as in [22]. The 982 images commonly viewed by all subjects were used
as the test set, while the remaining 8859 distinct images, unique to each sub-
ject, were used for training. To preserve spatial structure, the fMRI data was
partitioned into cubic patches of size 10× 10× 10.
Implementation Details. Our architecture integrates ViT-L/14 [13] and IP-
Adapter Plus [25] with NI = 16 tokens for image feature extraction. fMRI data
is processed through a 16-layer Transformer Encoder [21] and a 4-layer Perceiver
[6]. The model is trained for 150 epochs with a batch size of 256, starting with
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Fig. 2. Qualitative comparison of image reconstructions. MindLink reconstructs se-
mantically relevant images with robust cross-subject generalization.

a 50-epoch warmup using only Lrec. MindLink is optimized using AdamW with
a one-cycle scheduler, with a maximum learning rate of 3e-4. The temperature
τ = 0.1 in Llocal. The weights of the losses λ1, λ2, λ3 and λ4 are set to 1, 1,
1, 1e-2, respectively. For visual reconstructions, the SD v1.5 [14] model is used
with a DDIM sampler configured for 50 steps and a guidance scale of 7.5.
Evaluation. To quantitatively evaluate image quality, we use eight metrics con-
sistent with the protocol in [22]. Low-level features are measured by PixCorr,
SSIM [23], AlexNet(2), and AlexNet(5) [8], while high-level features are evalu-
ated with Inception [18], CLIP [13], EffNet-B [20], and SwAV [2].

3.2 Cross-Subject Brain Decoding

We evaluate MindLink’s by comparing its average reconstruction performance
across all subjects with state-of-the-art methods, including Takagi et al. [19],
Brain-Diffuser [12], MindEye [15], MindBridge [22], and UMBRAE [24].
Qualitative Results. As shown in Fig. 2, MindLink demonstrates superior vi-
sual quality and semantic accuracy compared to baselines. Specifically, in the
second row where the stimuli show food in a bowl with a spoon, MindLink re-
constructs the spoon for all subjects, whereas baselines fail. This illustrates that
MindLink properly captures fine-grained details and contextual elements for ac-
curate reconstructions. Furthermore, our model consistently maintains semantic
content across all subjects, as seen in the rightmost columns. Despite individual
variations in brain activity, the reconstructed images exhibit shared perception,
highlighting MindLink’s ability to generalize across subjects and achieve accurate
image reconstruction without subject-specific modules.
Quantitative Results. As shown in Table 1, MindLink achieves notable im-
provements in high-level metrics, with gains of 0.6% in Inception, 0.036 in EffNet-
B, and 0.031 in SwAV over the second-best results in the single model fash-
ion. It also performs comparably in SwAV against subject-specific methods like
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Table 1. Quantitative comparison of brain decoding between MindLink and other
methods. All metrics are averaged over 4 subjects. † indicates models trained in a per-
subject-per-model fashion for comparison.

Method
Subject
agnostic

Low-Level High-Level
# Params

PixCorr ↑ SSIM ↑ Alex(2) ↑ Alex(5) ↑ Incep ↑ CLIP ↑ EffNet-B ↓ SwAV ↓

Per-subject-per-model fashion

Takagi et al. [19] ✗ - - 83.0% 83.0% 76.0% 77.0% - - 487M
Brain-Diffuser [12] ✗ .254 .356 94.2% 96.2% 87.2% 91.5% .775 .423 1.45B
MindEye [15] ✗ .309 .323 94.7% 97.8% 93.8% 94.1% .645 .367 1.21B
MindBridge† [22] ✗ .148 .259 86.9% 95.3% 92.2% 94.3% .713 .418 561M
MindLink† ✗ .219 .323 92.1% 97.0% 92.7% 92.3% .684 .374 159M

Single model fashion

MindBridge [22] ✗ .151 .263 87.7% 95.5% 92.4% 94.7% .712 .418 694M
UMBRAE [24] ✗ .283 .341 95.5% 97.0% 91.7% 93.5% .700 .393 146M
MindLink (Ours) ✓ .227 .333 92.5% 97.0% 93.0% 92.8% .664 .362 159M

Table 2. Ablation study on Lsubj and cross-attention in token-level alignment.

Method
Low-Level High-Level

PixCorr ↑ SSIM ↑ Alex(2) ↑ Alex(5) ↑ Incep ↑ CLIP ↑ EffNet-B ↓ SwAV ↓

w/o Cross-att. .215 .330 90.6% 95.6% 90.5% 91.6% .694 .383
w/o Lsubj .222 .329 91.7% 96.8% 92.8% 92.5% .672 .367
Ours .227 .333 92.5% 97.0% 93.0% 92.8% .664 .362

Fig. 3. t-SNE visualization of fMRI embeddings with and without subject loss (Lsubj).
Embeddings are obtained from the fMRI Encoder Eb in MindLink on the NSD test set.

MindEye, indicating robust semantic alignment and consistent high-level con-
cept representations across subjects. Unlike MindBridge [22], which increases by
133M parameters when transitioning from single-subject to cross-subject set-
tings, MindLink maintains a constant size of 159M, ensuring superior efficiency
and scalability. While [16] reports better results, it fine-tunes a large language
model with >8B parameters, so it was excluded in our evaluation. Nevertheless,
MindLink achieves competitive results with only 159M parameters, highlighting
its balance of efficiency and accuracy.
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Fig. 4. Qualitative comparison with limited data for a new subject (subj 7): (a) fine-
tuning a model pretrained on other subjects (subj 1, 2, 5) and (b) training from scratch.

Ablation study. Ablation study results on domain adversarial training and
cross-attention in token-level alignment are reported in Table 2. Utilizing a
domain adversarial training with a subject-adversarial loss Lsubj consistently
improves performance across all eight metrics, demonstrating that discarding
subject-specific information enhances cross-subject generalizability. As illustrated
in the t-SNE visualization (Fig. 3), applying Lsubj alleviates subject-wise cluster-
ing, resulting in a more subject-invariant embedding space. Moreover, our cross-
attention-based token-level alignment outperforms rigid position-based matching
by dynamically computing token correspondences, highlighting the importance
of leveraging token interdependencies for robust decoding.

3.3 New Subject Adaptation

MindLink demonstrates strong adaptability to new subjects. To evaluate this
capability, we employed a cross-subject transfer learning approach under limited
data conditions. Specifically, we pretrained our model on fMRI data from three
source subjects and adapted it to a new target subject using subsets of 500, 1500,
and 4000 samples. We compared two approaches: (a) fine-tuning our pretrained
model on each subset of the new target subject’s data and (b) training the model
from scratch on the same subsets, following a per-subject-per-model paradigm.

Table 3. Quantitative comparison with limited data for a new subject (subj 7).

Training Strategy # Data
Low-Level High-Level

PixCorr ↑ SSIM ↑ Alex(2) ↑ Alex(5) ↑ Incep ↑ CLIP ↑ EffNet-B ↓ SwAV ↓
Scratch 500 .148 .307 84.1% 92.1% 84.9% 85.2% .791 .448
Fine-tuning 500 .175 .312 87.5% 94.9% 89.7% 90.1% .731 .406

Scratch 1500 .159 .309 86.1% 93.6% 86.9% 87.5% .767 .430
Fine-tuning 1500 .188 .317 88.8% 94.8% 90.1% 90.4% .720 .399

Scratch 4000 .171 .317 88.8% 95.1% 89.8% 89.7% .730 .408
Fine-tuning 4000 .199 .319 90.1% 95.6% 91.0% 91.2% .704 .389
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As shown in Figure 4, our fine-tuning approach consistently outperforms
scratch-trained models across all cases. While scratch-trained models struggle
with limited data, MindLink leverages cross-subject pretrained knowledge for
effective generalization. Table 3 confirms superior reconstruction accuracy across
all metrics, demonstrating robust performance even with just 500 samples and
highlighting MindLink’s efficiency in knowledge transfer and scalability.

4 Conclusion

In this work, we propose MindLink, which links multiple subjects into a sin-
gle model by extracting subject-invariant features while preserving the spatial
structure of 3D fMRI. MindLink achieves this using standardized cubic patches of
fMRI and applying domain adversarial training to enhance cross-subject general-
izability. The two-level alignment strategy bridges fMRI and image embeddings
through instance-level consistency and flexible token-level matching. Extensive
experiments on the NSD dataset confirm that our model achieves comparable
performance across multiple subjects and adapts effectively to new subjects.
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