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Abstract. Cardiac surgery is associated with the risk of acute kidney
injury (AKI), which can lead to prolonged hospital stays and increased
mortality. Accurate prediction of AKI before its onset could significantly
improve patient outcomes. However, existing AKI prediction models pri-
marily focus on numerical features such as laboratory values and vital
signs, while overlooking textual features, including preoperative diag-
noses and surgical procedures. To address this limitation, we propose
MedICL, which applies in-context learning (ICL) to the cardiac surgery
domain. By leveraging the powerful comprehension and reasoning ca-
pabilities of large language models, MedICL enables the integration of
textual and numerical features for AKI prediction. Nevertheless, the per-
formance of ICL is highly sensitive to the quality of the provided exam-
ples, potentially limiting its effectiveness. To overcome this challenge,
we introduce a Semantic Matching Unit (SMU), which selects seman-
tically relevant examples for each sample, thereby significantly enhanc-
ing the model’s performance. Furthermore, we observed that ICL-based
AKI predictions often suffer from instability and exhibit suboptimal per-
formance on downstream tasks. To address these issues, we developed
the Task Adaptability Enhancer (TAE), which calibrates the prediction
probabilities generated by ICL on the validation set. This approach not
only stabilizes the model’s outputs but also enhances its adaptability to
specific task scenarios. A series of experiments on the datasets collected
from West China Hospital (WCH) demonstrated that MedICL achieved
state-of-the-art performance. These results highlight the indispensable
role of medical text data in AKI prediction for cardiac surgery scenarios,
showcasing its potential to improve clinical practice.
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1 Introduction

Acute kidney injury (AKI) is a common and potentially life-threatening com-
plication of cardiac surgery, with an incidence ranging from 5% to 42% [2].
It significantly increases mortality and healthcare costs [23]. Since no effective
treatments currently exist for established AKI, early and accurate identification
of high-risk patients is critical for prevention through proactive management.
Therefore, real-time, personalized predictions of AKI during or after cardiac
surgery are essential to mitigating its impact and reducing related complications
[1].

In recent years, machine learning (ML) methods have been widely applied
to AKI prediction. The extensive adoption of electronic medical record (EMR)
systems in hospitals has significantly enhanced the efficiency and accuracy of
patient clinical data collection, providing a rich source of data for developing
ML-based AKI prediction models [3]. Most of these methods have demonstrated
promising predictive performance, with studies covering both critically ill adults
[4] and pediatric patients [5]. However, research on AKI prediction in the popu-
lation undergoing cardiac surgery is limited. Additionally, conventional machine
learning methods for AKI prediction primarily rely on numerical data (such as
laboratory values and vital sighs) [1] and make limited use of textual data (such
as preoperative diagnoses and surgical procedures).

To address the above limitations, We propose MedICL, a novel framework
built upon the powerful text understanding and few-shot learning capabilities of
large language model [6], making it highly suitable for cardiac surgery scenarios
with abundant textual data but limited overall data availability [7]. Our contri-
butions are summarized as follows: First, to the best of our knowledge, we are
the first to propose applying in-context learning (ICL) to the AKI prediction
task, enabling the complete dataset, including textual data, to be input into
the model for end-to-end AKI prediction. Second, considering that ICL heav-
ily relies on the quality of examples[8], this framework introduces a Semantic
Matching Unit (SMU) a plug-and-play module that selects the most semanti-
cally relevant examples for each sample based on embedding similarity, thereby
improving ICL prediction performance. Third, we introduce the Task Adapt-
ability Enhancer (TAE), a corrective mechanism that enables ICL to output a
probability distribution for classification instead of directly predicting a single
label. The probability distribution is further calibrated to ensure more stable
outputs and better adaptability to downstream tasks[9]. Finally, extensive ex-
periments on a real-world dataset highlight the promising performance of the
proposed method, MedICL, while ablation studies further validate the effec-
tiveness of each module.
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Task_Desc : This is an acute kidney injury prediction task...
Example 1 : {diagnosis: ***, surgery: ***, vital signs: *** ... Aki: 1}

Example 2 : {diagnosis: ***, surgery: ***, vital signs: *** ... Aki: 2}
…
Input : {diagnosis: ***, surgery: ***, vital signs: *** ... Aki:  }
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Fig. 1: The overview of our proposed MedICL framework. Panel (a) illustrates the
workflow of the Semantic Matching Unit (SMU), where the input and training
set are processed by a text encoder to perform semantic matching. Panel (b)
shows how the matching results are filled into a prompt template to structure
the input. In Panel (c), multiple outputs from the large language model(LLM)
are averaged and refined by the Task Adaptability Enhancer (TAE) to produce
the final output.

2 Methodology

2.1 Preliminaries

In-Context Learning(ICL) is a framework that enables language models to
learn tasks using only a few examples provided as demonstrations [6]. Formally,
given an input query text q and a set of candidate answers A = {a1, . . . , am}, a
pretrained language model L selects the candidate answer with the highest score
as its prediction, conditioned on a demonstration set D. The set D consists of an
optional task instruction T and k demonstration examples. Thus, D can be ex-
pressed as {T, e(q1, a1), . . . , e(qk, ak)} or {e′(q1, a1, T ), . . . , e′(qk, ak, T )}, where
e′(qi, ai, T ) represents an example formatted in natural language according to
the task. Depending on whether the k demonstration examples belong to the
same task, the problem can be categorized as task-specific in-context learning
(ICL) or cross-task ICL. In the cross-task ICL setting, each example may have
its own distinct instruction.

The likelihood of a candidate answer aj is defined as:

P (aj | q,D) = gL(aj , D, q),

where gL is a scoring function computed by the pretrained language model L,
given the candidate answer aj , the context D, and the input q. The final predicted
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label â is the candidate answer with the highest likelihood:

â = arg max
aj∈A

P (aj | q,D).

From the above, we can summarize that:(1) ICL shares similarities with few-
shot learning, as both involve the use of a small number of examples to perform
a task. However, the key difference lies in their approach: few-shot learning
typically requires updating model parameters to adapt to the task [10], whereas
ICL operates directly on pretrained large language models (LLMs) without any
parameter updates. (2) Similarly, ICL is closely related to prompt learning, as
it incorporates demonstration examples into the prompt to guide the model’s
predictions. Despite this resemblance, the distinction is that prompt learning
may involve either discrete templates or continuous soft prompts, which are
designed to elicit desired outputs [11], while ICL specifically relies on natural
language examples formatted as part of the input prompt.

2.2 Proposed Methodology

Semantic Matching Unit The choice of examples has a significant impact on
the performance of in-context learning (ICL). Randomly selecting examples can
lead to substantial fluctuations in prediction results and often produces subopti-
mal outcomes. Previous studies have demonstrated that selecting examples from
the training set that are semantically more similar to the query q improves the
model’s performance [12]. Therefore, it is crucial to match each q with the top-k
semantically most similar examples in a personalized manner.

We propose the SMU to address this challenge. Firstly, we preprocess the
data to extract only the textual components, denoted as xtext

i , which include in-
formation such as the medical histories, preoperative diagnoses, and intraopera-
tive procedures. Both the test query qtext and the extracted textual components
xtext
i from the training set are then fed into a sentence encoder µθ(·) to obtain

their vector representations vq = µθ(q
text) and vi = µθ(x

text
i ) (i = 1, 2, . . . , N).

Secondly, the similarity between vq and vi is computed using measures such as
cosine similarity, si =

vq·vi
∥vq∥∥vi∥ , or negative Euclidean distance, si = −∥vq−vi∥2.

Then, the k training examples with the highest similarity scores sσ(1) ≥ sσ(2) ≥
· · · ≥ sσ(k) are selected.

Afterward, these selected examples {xσ(1), xσ(2), . . . , xσ(k)} and their corre-
sponding outputs {yσ(1), yσ(2), . . . , yσ(k)} are concatenated to form the in-context
learning demonstration set D = {(xσ(1), yσ(1)), (xσ(2), yσ(2)), . . . , (xσ(k), yσ(k))}.
Finally, the constructed demonstration set D, along with the test query q, is fed
into a pretrained language model L to generate the prediction ŷ, where:

ŷ = L(q,D).

Task Adaptability Enhancer ICL lacks robustness to variations in prompt
templates and the order of demonstrations in practical applications, leading to
unreliable predictions [27]. Moreover, pretrained large language models may not
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be well-adapted to downstream tasks [13], such as predicting AKI in cardiac
surgery patients, which we aim to address.

To tackle these issues, we propose a probabilistic calibration approach, TAE,
which adjusts the output probability distribution rather than directly predicting
discrete labels. First, the ICL model generates a raw probability distribution
p ∈ Rm over possible classes for a given query q and a demonstration set D.
Next, the raw probabilities p are calibrated using an affine transformation:

p̃ = softmax(Ap+ b),

where A ∈ Rn×m is a weight matrix and b ∈ Rn is a bias vector. To op-
timize the calibration parameters A and b, we utilize a small validation set
{(xv

i , y
v
i )}

Dv
i=1, generating corresponding prompts P v

i for each validation sample.
The optimization objective minimizes the loss function, such as cross-entropy,
between the calibrated probabilities and the true labels:

min
A,b

Dv∑
i=1

Loss(θ∗,A,b;P v
i ).

This optimization is performed using gradient-based methods, initialized with
zeros or random values, and exhibits robustness to initialization choices. Finally,
the calibrated probabilities p̃ ∈ Rm are used to make the final prediction on test
set:

ŷ = argmax p̃,

ensuring the output is robust, reliable, and better aligned with downstream tasks.
Overall Structure An overview of the proposed framework is illustrated in
Figure 1. Our framework consists of a Semantic Matching Unit (SMU) for se-
lecting semantically relevant examples and a Task Adaptability Enhancer (TAE)
for calibrating output probabilities. The SMU ensures contextual alignment of
the demonstration set, while the TAE adjusts raw probabilities using an affine
transformation. Additionally, we designed a task-specific prompt template that
incorporates the task description, background knowledge, and relevant exam-
ples, enabling the large language models (LLMs) to better understand the task
[24].

3 Experiments

We conduct experiments to evaluate the performance of our proposed frame-
work, MedICL, in predicting AKI in patients who underwent cardiac surgery.
Additionally, we conduct ablation studies to verify the contribution of each mod-
ule in the framework and evaluate its performance under various experimental
settings, further enhancing its practicality.
Dataset. We analyzed and systematically extracted medical records of patients
who underwent cardiac surgery at WCH. From this process, we derived the Adult
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Table 1: Performance comparison between MedICL and conventional methods
under the Numerical-Only and Text-Augmented scenarios.

Methods Numerical-Only Text-Augmented

Prec ↑ Rec ↑ F1 ↑ Prec ↑ Rec ↑ F1 ↑

Logistic Regression 0.58 0.62 0.60 0.66 0.63 0.64
Random Forest 0.68 0.62 0.65 0.75 0.70 0.72
XGBoost 0.60 0.66 0.63 0.73 0.68 0.70
MedICL (Ours) 0.70 0.58 0.63 0.80 0.75 0.77

Table 2: Ablation experiments of MedICL on ACSD. To evaluate the impact of
different components, we: (i) remove the Semantic Matching Unit (SMU), (ii)
remove the Task Adaptability Enhancer (TAE), and (iii) disabled the multi-
sampling with probability averaging (PA) strategy.
Method SMU TAE PA Prec ↑ Rec ↑ F1 ↑

Baseline × × × 0.62 0.54 0.58
+ SMU ✓ × × 0.75 0.70 0.72
+ TAE × ✓ × 0.68 0.63 0.66
MedICL ✓ ✓ × 0.80 0.75 0.77
MedICL+PA ✓ ✓ ✓ 0.87 0.78 0.82

cardiac surgery Dataset (ACSD), which contains detailed information on 5,104
adult patients (aged ≥ 18 years) who received cardiac surgery. Certain patients
were excluded from the study, including those with preoperative renal dysfunc-
tion (serum creatinine > 176µmol/L or requiring renal replacement therapy),
those undergoing emergency surgery, those who died in the operating room, and
those requiring intra-aortic balloon pump (IABP) or extracorporeal membrane
oxygenation (ECMO) to discontinue cardiopulmonary bypass (CPB) during the
procedure.

The data were collected using a standardized form and included patient de-
mographics, NYHA (New York Heart Association) classifications, ASA (Ameri-
can Society of Anesthesiologists) physical status, preoperative laboratory results,
medical history, preoperative medications, and intraoperative details. The pri-
mary focus of this study was the severity of acute kidney injury (AKI), which
was defined and categorized based on the AKIN classification system [14].
Evaluation Metrics Following previous works[16], for AKI prediction, we eval-
uate our framework using the macro F1 score across all AKI categories (0, 1, 2,
3). Additionally, we report precision and recall to further assess its performance.
Implementation Details The dataset we used includes laboratory values, vi-
tal signs, preoperative diagnoses, surgical procedures, and the final AKI severity
levels. The dataset is split into training, validation, and test sets in a 6:2:2 ratio.
To achieve semantic matching, we generate text embeddings using the text-
embedding-ada-002 model [20]. In the prompt template for in-context learning
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(a) Cosine Similarity Results (b) Euclidean Distance Results

Fig. 2: Ablation experiments of MedICL on ACSD were conducted to evaluate
its performance under different settings: (1) varying models (GPT-4 and O1-
mini), (2) the number of demonstration examples (ranging from 0 to 15), and (3)
different semantic similarity calculation methods (cosine similarity and euclidean
distance).

(ICL), We explicitly define the task, provide the necessary medical background
knowledge, emphasize the progressive worsening of conditions as the AKI classi-
fication level increases, and require the LLM to output probability distributions.
We implement ICL by calling the API and leveraging the o1-mini[15] and gpt-4
models.

4 Results and Discussion

AKI Prediction In previous studies on AKI prediction tasks across various
populations, conventional methods such as Random Forest [19], XGBoost[18],
and Logistic Regression [17] have been widely used. However, these approaches
often focus solely on numerical features while neglecting textual information.
Textual information, such as clinical notes, often contains rich contextual and
domain-specific knowledge that can significantly improve predictive performance.
Therefore, we compared our proposed MedICL method with conventional meth-
ods on ACSD under two scenarios: the Numerical-Only scenario, which uses only
numerical features, and the Text-Augmented scenario, which incorporates both
numerical and textual information.

As shown in Table 1, under the Numerical-Only setting, Random Forest
achieved the best performance, with a macro F1 score of 0.65, while MedICL
ranked second with a macro F1 score of 0.63, lagging by 0.02. In this setting,
textual information was removed from both the demonstration set D and the
test query q. The absence of textual information likely hindered the large lan-
guage model’s ability to interpret the numerical features, resulting in suboptimal
performance of MedICL.
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Under the Text-Augmented setting, textual embeddings generated by text-
embedding-ada-002[20] were incorporated into the training process of conven-
tional methods. MedICL achieved the best performance, with a macro F1 score
of 0.77, outperforming the best conventional method (Random Forest) by 0.05.
Moreover, all methods showed performance improvements compared to the pre-
vious setting. These results highlight the significance of medical textual data
in AKI prediction for cardiac surgery scenarios. Benefiting from the extensive
pre-trained knowledge and reasoning capabilities of large language models [25,
26], ICL excels at understanding and analyzing tasks with only a few examples,
leading to the best performance.
Ablation Study The ablation experiments conducted on the ACSD dataset
highlight the importance of each component within our proposed MedICL frame-
work, as shown in Table 2. We evaluated all methods using precision, recall, and
F1. The baseline refers to randomly matching each query q with a demonstration
set D. The Semantic Matching Unit (SMU) significantly improved performance,
increasing the F1 score from 0.58 (baseline) to 0.72, demonstrating the crit-
ical role of semantically relevant demonstrations in ICL. Meanwhile, the Task
Adaptability Enhancer (TAE) achieved a substantial performance boost through
domain alignment, raising the F1 from 0.58 (baseline) to 0.66. Lastly, we val-
idated the effectiveness of the multi-sampling with probability averaging (PA)
strategy, which further improved the F1 from 0.77 to 0.82. By integrating these
three components, our proposed MedICL framework achieved the best perfor-
mance in predicting AKI among patients undergoing cardiac surgery.

As shown in Figure 2, we evaluated the performance of MedICL under dif-
ferent settings. When using o1-mini for ICL, it outperformed GPT-4, despite
GPT-4 achieving excellent performance on the Open Medical-LLM Leaderboard
[21, 22]. This is likely because o1-mini demonstrates superior reasoning capabil-
ities, leading to better overall performance. We also analyzed the impact of the
number of demonstration examples matched to each query. From the results,
performance improves significantly when the number of demonstration exam-
ples increases from 0 to 5. However, beyond 10 demonstration examples, the
performance gain becomes marginal. From a cost-effectiveness perspective, 10
examples are sufficient to achieve optimal results. Lastly, we evaluated the effect
of different semantic similarity calculation methods. Cosine similarity outper-
formed Euclidean distance, as it is not affected by normalization and accounts
for vector direction differences, making it more suitable for semantic similarity
calculations.

5 Conclusion

In this study, we propose MedICL, a novel framework based on in-context learn-
ing (ICL) that leverages the powerful understanding and reasoning capabilities of
large language models (LLMs) for AKI prediction in patients undergoing cardiac
surgery. MedICL integrates the Semantic Matching Unit (SMU), which person-
alizes the demonstration set D by selecting the most relevant examples based
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on semantic similarity for each query q in ICL. Additionally, it incorporates the
Task Adaptability Enhancer (TAE), which adjusts the probability distribution
to ensure that the output is robust, reliable, and better aligned with the con-
text of cardiac surgery. Experimental results demonstrate that MedICL achieves
superior performance on the ACSD dataset compared to conventional AKI pre-
diction methods. By introducing medical text data into the AKI prediction task
through ICL, we believe that MedICL paves a new pathway for AKI prediction.
In the future, we plan to apply our method to larger datasets and more diverse
medical scenarios, such as ICU patients and hospitalized patients.
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