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Abstract. Breast-conserving surgery (BCS) is the preferred treatment
for early-stage breast cancer, offering survival rates comparable to mas-
tectomy while preserving breast aesthetics. Accurate tumor segmenta-
tion is essential for surgical planning, yet segmentation models often
exhibit biases toward specific tumor sizes, particularly underperform-
ing on smaller tumors. To address this, we propose a novel approach
that uses generative models to improve segmentation across tumor sizes.
Specifically, we adapt the Stable Diffusion model and apply a Denoising
Diffusion Probabilistic Model (DDPM) inversion approach to generate
synthetic tumors of controlled sizes within real breast MRIs, helping to
balance tumor size distribution in the training data. By augmenting the
dataset with 10-20% synthetic tumor images, our method significantly
improves segmentation accuracy for small tumors without compromising
performance for larger tumors. This enhancement allows for more pre-
cise tumor assessment, leading to better-informed surgical decisions and
potentially reducing unnecessary mastectomies.

Keywords: Breast Cancer Segmentation - Stable Diffusion - DDPM
Inversion - Synthetic Data Augmentation in MRI.

1 Introduction

Breast cancer is the second most diagnosed cancer worldwide [23]. A key decision
in its management is choosing between breast-conserving surgery (BCS) and
mastectomy. For decades, radical mastectomy was the standard treatment [22],
but randomized controlled trials (RCTs) in the 1980s demonstrated that BCS
combined with radiation therapy (RT) provides equivalent survival rates and
local control, leading to a paradigm shift [5]. Today, BCS plus RT is used in
approximately 70% of early-stage cases [5].

A primary advantage of BCS lies in preserving the shape of the breast, im-
proving psychological well-being [5]. BCS is preferred for younger patients with
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small, unifocal tumors in favorable locations [7]. Successful BCS requires achiev-
ing clear margins at a microscopic level minimizing the risk of loco-regional
disease, while preserving healthy breast tissue [3|. Obtaining clear pathologi-
cal margins (typically > 1mm) free of cancerous cells surrounding the tumor
is essential [2]. The presence of compromised margins is associated with poorer
oncological outcomes, which makes precise identification of the tumor boundary
a key factor during surgical planing [2].

Magnetic Resonance Imaging (MRI) plays a vital role in surgical planning
by accurately delineating tumor extent, local spread to the skin and nipple, and
lymph node involvement [23]. However, its high sensitivity can lead to overesti-
mation, potentially resulting in excessive tissue excision and higher mastectomy
rates [26]. While automated segmentation models can provide tumor measure-
ments, they are often biased toward specific tumor sizes [9], under-performing
on the smaller lesions that are critical for surgical eligibility.

To address this challenge, we leverage generative models, which are effective
at augmenting datasets to enhance model performance [19], particularly in long-
tailed scenarios by addressing challenges posed by underrepresented classes [24,
6]. In medical imaging, they offer a solution to data scarcity and annotation
challenges [13]. Acknowledging that generating entire synthetic images can in-
troduce unwanted biases [1], our framework instead inserts synthetic tumors into
real, healthy MRI slices. We achieve this by adapting a pre-trained Stable Dif-
fusion model [20] and using Denoising Diffusion Probabilistic Models (DDPMs)
inversion [12] to generate tumors of controlled sizes. This targeted augmentation
strategy is used to train a SwinUNETR segmentation model [8], enhancing its
ability to accurately segment tumors across the size spectrum while preserving
anatomical realism.

Our key contributions are as follows:

— We introduce a novel framework leveraging Stable Diffusion and DDPM
inversion for controlled synthetic tumor generation in real breast MRIs.

— We address tumor size imbalance by generating synthetic tumors of varying
sizes, improving segmentation robustness across the size spectrum, especially
for small tumors due to their relevance in surgical planning.

— Our robust segmentation model enables more accurate tumor size assess-
ment, potentially improving surgical planning and reducing unnecessary
mastectomies.

2 Methodology

This section outlines our method for improving breast MRI segmentation with
synthetic tumor augmentation. Our pipeline includes three key components: Sta-
ble Diffusion for tumor generation, DDPM inversion for controlled insertion, and
SwinUNETR for segmentation.
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Fig. 1: Overview of synthetic tumor generation and augmentation strategies. (a)
Stable Diffusion ability to modify tumor presence in MRI images. (b) Effects
of inversion trajectory and text prompt strength, showing increased sensitivity
to long trajectories and loss of realism with strongly weighted prompts. (c) A
diverse set of text prompts used to describe MRI images, enhancing variability
in synthetic data generation.

2.1 Stable Diffusion adaptation for breast MRI

Stable Diffusion [20] is a latent diffusion model (LDM) that generates high-
quality images by iteratively denoising a Gaussian noise input through a U-
Net-based architecture. By working in the latent space of a Variational Autoen-
coder (VAE) [14] instead of pixel space, the model significantly reduces com-
putational cost and improves image quality. The generation process is guided
by text prompts via a CLIP (Contrastive Language-Image Pretraining) text en-
coder [18]. However, while Stable Diffusion is effective for natural images, strug-
gles with breast MRI due to its absence in the training data, requiring domain
adaptation.

Fine-tuning strategy Stable Diffusion operates on 2D image space and utilizes
descriptive text prompts to guide image generation. In our adaptation dataset,
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each image was resized to 512 x 512 pixels, and a descriptive prompt specifying
"2D axial MRI view" (as illustrated in Fig. 1c) was assigned to each image. The
tumor size is determined according to the pixel area of the segmentation mask
within each 2D slice. Specifically, we categorized tumors as: tiny (less than 200
pixels), small (200-399 pixels), medium (400-699 pixels), large (700-1599 pixels),
and very large (1600 pixels or more). For images of healthy breast, the prompt
explicitly stated "no tumor". This size-controlled prompting strategy effectively
guides the model to generate tumors of the desired dimensions, as demonstrated
in Fig. la.

To efficiently fine-tune the pre-trained Stable Diffusion model, we employ
Low-Rank Adaptation (LoRA) [11]. LoRA enables efficient fine-tuning for med-
ical imaging by training only a small set of parameters instead of the exist-
ing model weights, reducing computational cost. Specifically, we only fine-tune
the diffusion model in latent space, while freezing the pre-trained VAE en-
coder/decoder and CLIP text encoder. This strategy utilizes the pre-trained
model broad understanding of general image features while refining the diffusion
process specifically for the breast MRI domain.

Addressing censorship issues A significant challenge we encountered was the
built-in safety mechanisms of generative models, which flag terms like "breast"
as NSFW (Not Safe For Work), preventing their use in text prompts. To cir-
cumvent this, we rephrased our prompts using generic terminology like '"MRI
image’ and avoided explicit anatomical references, as illustrated in Fig. 1c. We
also cropped images to single-breast views to avoid triggering automated content
filtering on both breasts. These adaptations allowed us to successfully fine-tune
Stable Diffusion for breast MRI synthetic tumor generation without triggering
the censorship mechanisms.

2.2 DDPM inversion for tumor insertion

Denoising Diffusion Probabilistic Models (DDPMSs) [10] generate images through
an iterative denoising process. The forward diffusion process gradually adds
Gaussian noise to an image xg over T time steps, resulting in a noisy image
7. This process can be defined as:

= o1+ V1 —ave, € ~N(0,1), (1)

where a; controls the noise schedule. The reverse diffusion process then iter-
atively denoises xp using a learned model to approximate the original image
Zo-

While DDIM (Denoising Diffusion Implicit Models)[25] enables faster sam-
pling, its strict one-to-one mapping between image and noise limits flexibility
for localized editing. Following Huberman et al.[12], we use DDPM inversion
to extract noise vectors that can reconstruct the original image when reversed.
This stochastic process allows for diverse synthetic tumor insertions into real
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Fig. 2: Tumor insertion into healthy breast MRIs using DDPM inversion. (1)
Tumor mask insertion into a healthy breast image as a noisy mask, (2) Artificial
mask transformation to realistic tumor via DDPM inversion, and (3) Example
results: (a) real healthy breast MRI, (b) tumor mask, (c) generated image with
a synthetic tumor.

MRI slices, even with the same mask. Empirically, we found that a reverse diffu-
sion trajectory between 75% and 85% balances realism and editability. Shorter
trajectories (e.g., 50%) limit editing flexibility, while longer ones (approaching
100%) risk mode collapse, losing key image features. Additionally, text prompt
strength has a notable impact on realism. Based on expert feedback, we found
that values of 5 or lower preserve anatomical integrity, while higher values often
result in unrealistic anatomical and visual artifacts (Fig. 1b).

To expand the segmentation dataset, we apply DDPM inversion to insert
tumors into healthy breast MRI images (Fig. 2). Specifically, we smooth mask
boundaries using a Gaussian kernel to ensure seamless tumor-tissue transitions,
and replace tumor mask pixels with Gaussian noise (mean = 0.3, std = 0.3) for
normalized images (0—1 range). This method leverages the inversion process to
transform artificial masks into realistic-looking tumors, guided by text prompts
indicating expected tumor sizes.

2.3 SwinUNETR for tumor segmentation

SwinUNETR [8] combines the strengths of U-Net architectures [21] and Swin
Transformers [15]. Its hierarchical Swin Transformer backbone with shifted win-
dow attention efficiently captures multi-scale features, which are essential for
accurate medical image segmentation. The U-Net skip connections allow for
the fusion of these multi-scale features, combining local and global context. We
utilize SWinUNETR for tumor segmentation due to its strong performance in
medical imaging, ability to model long-range dependencies, and efficient feature
extraction.
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2.4 Segmentation model training with synthetic data

We train a SwinUNETR-based segmentation model using a supervised approach
on a manually annotated breast MRI dataset. To address the previously identi-
fied performance gap for smaller tumors, we generate synthetic tumor-augmented
images using our fine-tuned Stable Diffusion model via DDPM inversion as de-
scribed in Fig. 2. Following, we retrain the segmentation model in two stages.
First, we train on a mix of real and synthetic images to improve feature repre-
sentation. Then, we fine-tune using only real images to enhance generalization
to clinical cases. Both stages employ Dice loss [16] to ensure robust segmentation
across all tumor sizes. This two-stage strategy balances synthetic data diversity
with real-world accuracy.

3 Experiments

3.1 Dataset

This retrospective study used T1-subtraction MR images from 130 breast can-
cer patients who underwent surgery at Kyungpook National University Chilgok
Hospital between January 2015 and December 2018. The study was approved
by the Institutional Review Board (approval number, KNUCH 2022-03-006-002).
Clinical tumor size, location, and other tumor characteristics were obtained from
radiology reports. Two radiology technicians manually annotated indexed breast
lesions on 2D axial slices, guided by these reports. To ensure quality, two radiol-
ogists with 10 and 20 years of experience independently reviewed and validated
all segmentations.

Annotations focused exclusively on the indexed tumor identified in the ra-
diology report, ensuring segmentation performance assessment was limited to
surgically treated lesions. Other untreated masses that may have had varying
degrees of diagnostic uncertainty or clinical significance were ignored to reduce
ambiguity in our evaluation.

For experiments, the dataset was randomly split into training (50 samples),
validation (15 samples), and testing (65 samples) sets.

3.2 Implementation details

Our experiments were conducted using PyTorch 2.2, integrating models from
various open-source frameworks. For synthetic tumor generation, we used Stable
Diffusion v1.4 from the Hugging Face diffusers library [17]. Fine-tuning was
performed with Low-Rank Adaptation (LoRA) [11], using a rank of 4, a learning
rate of 1074, and a batch size of 1 for 60000 steps on a TITAN RTX GPU with
24GB of memory. The DDPM inversion process followed the implementation
of Huberman et al.[12]. For tumor segmentation, we employed SwinUNETR,
implemented in the MONAI framework [4], training the model on 2D slices of
size 512 x 512 with a batch size of 16.
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Table 1: Dice Scores (%) by Tumor Size and Synthetic Data Percentage.

Synthetic <2cm >2cm, <5cm > 5 cm All Sizes
Data (%) . : : .
Dice 95% CI Dice 95% CI Dice 95% CI Dice 95% CI

0 62.6 [49.6, 74.3] 68.7 [56.5, 79.7] 75.3 [67.4, 81.3] 67.5 [60.0, 74.5]
2 68.3 [57.1, 78.2] 70.4 [59.4, 80.0] 72.7 [66.5, 78.7] 70.0 [63.4, 75.9]
5 63.3 [50.4, 74.9] 69.6 [58.0, 79.8] 73.3 [66.5, 79.5] 67.8 [60.5, 74.3]
10 72.8 [63.4, 80.9] 72.5 [61.7, 81.8] 75.8 [70.2, 80.9] 73.2 [67.1, 78.6]
20  73.9 [65.1, 81.5] 73.1 [61.9, 82.5] 73.1 [67.4, 78.4] 73.4 [67.4, 78.7]

30 66.9 [54.3, 78.2] 68.3 [55.7, 79.6] 74.9 [67.6, 81.2] 68.9 [61.6, 75.7]
40 69.9 [57.8, 80.3] 71.1[59.4, 81.2] 73.1[66.1, 79.2] 71.0 [64.0, 77.3]
50 67.5 [55.5, 78.1] 72.6 [62.1, 81.8] 71.4 [64.1, 78.2] 70.3 [63.5, 76.4]
60 65.7 [53.1, 77.1] 69.5 [57.7, 80.0] 76.1 [69.5, 81.5] 69.2 [62.0, 75.8]

3.3 Evaluation protocol

We assessed segmentation performance by computing the Dice score between
the predicted 3D tumor mask and the corresponding ground truth annotation.
To obtain a 3D assessment, we stacked all predicted and annotated slices into
volumetric representations before evaluation. To quantify uncertainty, we calcu-
lated 95% confidence intervals (CI) using non-parametric bootstrap clustering
analysis.

Given the importance of tumor size in surgical planning, we further analyzed
segmentation performance based on tumor size. Tumors were categorized into
three groups according to their largest cross-sectional diameter in 3D space, as
recorded in the radiology report: smaller than 2 cm, between 2 cm and 5 cm,
and larger than 5 cm.

3.4 Results

Table 1 illustrates the impact of synthetic data augmentation on Dice scores for
tumor segmentation, categorized by tumor size. Without synthetic data (0%),
the model achieved its highest Dice score for tumors larger than 5 cm (75.3;
95%CI: [67.4, 81.3]), while its performance dropped significantly for tumors
smaller than 2 cm (62.6; 95%CTI: [49.6, 74.3]). This baseline result confirms the
model difficulty with smaller tumors, which are particularly relevant for breast-
conserving surgery (BCS).

The introduction of synthetic data had varying effects depending on tumor
size. For smaller tumors (less than 2 cm), we observed a marked improvement in
Dice scores with the addition of synthetic data. The most significant gains oc-
curred at 10% and 20% synthetic data, where Dice scores reached 72.8 (95%CI:
[63.4, 80.9]) and 73.9 (95%CT: [65.1, 81.5]), respectively. This suggests that syn-
thetic augmentation is particularly beneficial for improving the segmentation of
smaller, more challenging tumors. In contrast, for medium-sized (2-5 cm) and
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larger tumors (>5 cm), Dice scores remained relatively stable across different
levels of synthetic data.

Fig.3 shows the Dice score distributions across all tumor sizes for varying
amounts of synthetic data. Smaller variations in scores indicate greater model
robustness. In each box plot, the central line represents the median, while the
mean is indicated by a dot within the box. Models trained with 10% and 20%
synthetic data exhibited the least variation, suggesting that this range may be
optimal. As shown in Fig.4, segmentation of small tumors improved. Importantly,
performance on other tumor sizes was not adversely affected. However, increasing
the proportion of synthetic data beyond 20% did not yield further improvements
and instead led to a decline in performance. This may be due to the model
overfitting to synthetic data patterns, reducing accuracy on real small tumors.

3.5 Limitations

Our study has several limitations. First, the experiments were conducted on a
small dataset from a single institution, which may limit generalizability. Tumor
descriptions were simplified to 2D visible size, omitting details like tumor type
(mass vs. non-mass), focality (unifocal, multifocal, or multicentric), cancer sub-
type, and distance to the skin or nipple, all important for surgical assessment.
Patient-specific factors such as breast size, BMI, tissue density, and other con-
ditions were also not considered. Lastly, tumor size in text prompts was based
solely on segmentation masks, but alternative estimation methods are needed
for better scalability.

4 Conclusion

This study demonstrated that augmenting breast cancer MRI datasets with
10-20% synthetic images—generated using Stable Diffusion and DDPM inver-
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sion—significantly improves the segmentation of small breast tumors, without
compromising performance on larger tumors. These improvements may lead
to more accurate tumor measurements, supporting surgeons in making better-
informed decisions between BCS and mastectomy, while preserving oncological
safety. Future work should focus on validating these findings in larger, multi-
institutional datasets, incorporating detailed tumor characteristics relevant to
surgical planning, accounting for patient-specific anatomical factors, and devel-
oping scalable methods for tumor size estimation beyond segmentation masks.

Acknowledgments. This work was supported by the National Research Foundation
of Korea (NRF) grant funded by the Korea government (MSIT)(2022R1A2C2009415),
the Korea Medical Device Development Fund grant funded by the Korea government
(the Ministry of Science and ICT, the Ministry of Trade, Industry and Energy, the Min-
istry of Health & Welfare, the Ministry of Food and Drug Safety) (Project Number:
1711197554, RS-2023-00227526), the 'Digital Healthcare Medical Device Verification
Support Project’ of the Ministry of Health and Welfare, Daegu Metropolitan City, and
the Korea Health Industry Development Institute (Project Number: B0080716000969),
and Institute of Information & communications Technology Planning & Evaluation
(IITP) grant funded by the Korea government (MSIT)(NO. RS-2023-00223446, Devel-
opment of object-oriented synthetic data generation and evaluation methods).

Disclosure of Interests. The authors have no competing interests to declare that
are relevant to the content of this article.

References

1. Babul, K.A.R., Sathish, R., Pattanaik, M.: Synthetic simplicity: Unveiling bias
in medical data augmentation. In: Data Engineering in Medical Imaging: Second
MICCATI Workshop, DEMI 2024, Held in Conjunction with MICCAI 2024, Mar-
rakesh, Morocco, October 10, 2024, Proceedings. vol. 15265, p. 64. Springer Nature
(2025)

2. Bundred, J.R., Michael, S., Stuart, B., Cutress, R.I., Beckmann, K., Holleczek,
B., Dahlstrom, J.E., Gath, J., Dodwell, D., Bundred, N.J.: Margin status and
survival outcomes after breast cancer conservation surgery: prospectively registered
systematic review and meta-analysis. bmj 378 (2022)

3. Cardoso, F., Kyriakides, S., Ohno, S., Penault-Llorca, F., Poortmans, P., Rubio,
L., Zackrisson, S., Senkus, E.: Early breast cancer: Esmo clinical practice guidelines
for diagnosis, treatment and follow-up. Annals of oncology 30(8), 1194-1220 (2019)

4. Cardoso, M.J., Li, W., Brown, R., Ma, N., Kerfoot, E., Wang, Y., Murrey, B.,
Myronenko, A., Zhao, C., Yang, D., et al.: Monai: An open-source framework for
deep learning in healthcare. arXiv preprint arXiv:2211.02701 (2022)

5. Christiansen, P., Mele, M., Bodilsen, A., Rocco, N., Zachariae, R.: Breast-
conserving surgery or mastectomy?: impact on survival. Annals of Surgery Open
3(4), €205 (2022)

6. Elberg, R., Parra, D., Petrache, M.: Long tail image generation through feature
space augmentation and iterated learning. arXiv preprint arXiv:2405.01705 (2024)

7. Fajdic, J., Djurovic, D., Gotovac, N., Hrgovic, Z.: Criteria and procedures for breast
conserving surgery. Acta Informatica Medica 21(1), 16 (2013)



10

10.

11.

12.

13.

14.
15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

M. Luna et al.

Hatamizadeh, A., Nath, V., Tang, Y., Yang, D., Roth, H.R., Xu, D.: Swin unetr:
Swin transformers for semantic segmentation of brain tumors in mri images. In:
International MICCALI brainlesion workshop. pp. 272-284. Springer (2021)
Hiraman, A., Viriri, S., Gwetu, M.: Lung tumor segmentation: a review of the state
of the art. Frontiers in Computer Science 6, 1423693 (2024)

Ho, J., Jain, A., Abbeel, P.: Denoising diffusion probabilistic models. Advances in
Neural Information Processing Systems (2020)

Hu, E.J., Shen, Y., Wallis, P., Allen-Zhu, Z., Li, Y., Wang, S., Wang, L., Chen, W.,
et al.: Lora: Low-rank adaptation of large language models. ICLR 1(2), 3 (2022)
Huberman-Spiegelglas, 1., Kulikov, V., Michaeli, T.: An edit friendly ddpm noise
space: Inversion and manipulations. In: Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition. pp. 12469-12478 (2024)

Jung, H.K., Kim, K., Park, J.E., Kim, N.: Image-based generative artificial intel-
ligence in radiology: comprehensive updates. Korean Journal of Radiology 25(11),
959 (2024)

Kingma, D.P., Welling, M., et al.: Auto-encoding variational bayes (2013)

Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin
transformer: Hierarchical vision transformer using shifted windows. In: Proceedings
of the IEEE/CVF international conference on computer vision. pp. 10012-10022
(2021)

Milletari, F., Navab, N., Ahmadi, S.A.: V-net: Fully convolutional neural networks
for volumetric medical image segmentation. In: 2016 fourth international confer-
ence on 3D vision (3DV). pp. 565-571. Ieee (2016)

von Platen, P., Patil, S., Lozhkov, A., Cuenca, P., Lambert, N., Rasul, K.,
Davaadorj, M., Nair, D.; Paul, S., Berman, W., Xu, Y., Liu, S., Wolf, T.: Diffusers:
State-of-the-art diffusion models. https://github.com/huggingface/diffusers (2022)
Radford, A., Kim, J.W., Hallacy, C., Ramesh, A., Goh, G., Agarwal, S., Sastry, G.,
Askell, A., Mishkin, P., Clark, J., et al.: Learning transferable visual models from
natural language supervision. In: International conference on machine learning. pp.
8748-8763. PmLR (2021)

Rahat, F., Hossain, M.S., Ahmed, M.R., Jha, S.K., Ewetz, R.: Data augmentation
for image classification using generative ai. arXiv preprint arXiv:2409.00547 (2024)
Rombach, R., Blattmann, A., Lorenz, D., Esser, P., Ommer, B.: High-resolution
image synthesis with latent diffusion models. In: Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition. pp. 10684-10695 (2022)
Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomed-
ical image segmentation. In: Medical image computing and computer-assisted
intervention-MICCAI 2015: 18th international conference, Munich, Germany, Oc-
tober 5-9, 2015, proceedings, part 11 18. pp. 234-241. Springer (2015)

Sakorafas, G.H.: The origins of radical mastectomy. AORN journal 88(4), 605-608
(2008)

Sharma, S., Vicenty-Latorre, F.G., Elsherif, S., Sharma, S.: Role of mri in breast
cancer staging: A case-based review. Cureus 13(12) (2021)

Shin, J., Kang, M., Park, J.: Fill-up: Balancing long-tailed data with generative
models. arXiv preprint arXiv:2306.07200 (2023)

Song, J., Meng, C., Ermon, S.: Denoising diffusion implicit models. International
Conference on Learning Representations (2020)

Thompson, J.L., Wright, G.P.: The role of breast mri in newly diagnosed breast
cancer: an evidence-based review. The American Journal of Surgery 221(3), 525—
528 (2021)



