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Abstract. The cardiothoracic diameter ratio (CTR) biometric in four-
chamber ultrasound plane is often measured for diagnosing congeni-
tal heart disease. However, due to the commonly existing artifacts like
acoustic shadowing, manual measurement can be time-consuming and
labor-intensive task, and may results in high measurements variability.
Presently, one of the most popular approaches is segmentation-based
methods, which utilize deep learning networks to segment the cardiac
and thoracic regions. Then, the metric is calculated through an ellipse
fitting scheme. This is inefficient, and requires additional post-processing.
To tackle the above problems, in this paper, we therefore present an one-
stage ellipse detection network, namely EllipseDet, which detects the
cardiac and thoracic regions in ellipse, and then automatically calculates
the CTR biometric in four-chamber view. In particular, we formulate
the network that detects the center of each object as points and re-
gresses the ellipses’ parameters simultaneously. Besides, we propose a
novel ellipse feature alignment module and Ellipse-IoU loss to further
regulate the regression procedure. We have evaluated EllipseDet on a
clinical echocardiogram dataset and the experimental results show that
our proposed framework outperforms several state-of-the-art methods.
As an open science, source code, images dataset and pre-trained weights
are available at https://github.com/szuboy/FOCUS-dataset.

Keywords: Biometric Estimation - Ellipse Detection - Four-chamber
Ultrasound View - Cardiothoracic Diameter Ratio

1 Introduction

Fetal congenital heart disease is one of the most common forms of birth defects
worldwide, with an approximate incidence rate of 8% among newborn babies
[20]. Four-chamber view of the fetal echocardiography is an important yet unique
tool for assessing the fetus for the presence of congenital heart disease [5]. In the
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Fig.1: (a) The definition of the CTR biometric in the four-chamber view and
(b-e) the comparisons of object representation in different estimation pipelines.

four-chamber view, assessment and diagnosis are based on the cardiothoracic di-
ameter ratio (CTR) [19] biometric, as shown in Fig. 1(a). Specifically, the CTR
assesses heart size by comparing the maximum cardiac diameter to the thoracic
diameter. However, due to the commonly existing acoustic shadowing artifact in
fetal echocardiogram, the manual measurements is a labor-intensive and time-
consuming process, and suffer from large inter-operator variance. Therefore, au-
tomatic and reliable fetal cardiac measurements are in high demand.

Recently, many deep learning methods have been proposed for fetal biomet-
rics estimation [18,3,1], but they still cannot achieve satisfactory results due
to the low quality of four-chamber view. Existing deep learning-based methods
can be classified into three categories: segmentation-based methods, landmark-
based methods and box-based methods, as shown in Fig. 1. Segmentation-based
methods [15,18,12] are currently the most common approach, utilizing segmen-
tation results as an intermediate processing step. However, these approaches
make biometrics estimation heavily dependent on these results, leading to error
accumulation across both stages [26]. Landmark-based methods [1], on the other
hand, detect the landmarks directly on the image without relying on segmen-
tation masks. Unfortunately, ambiguous boundaries caused by massive speckle
noise and artifacts significantly hinder the effectiveness of landmark-based ap-
proaches. Besides, rotation object detection methods [3,23] can also be used as
candidate solutions. However, traditional bounding box may perform poorly in
representing such ball-shaped biomedical objects [16]. Thus, how to design a suit-
able method to represent the cardiac and thoracic regions is the key procedure
for achieving precise biometric estimation.

In this paper, we present a one-stage detection framework, called EllipseDet,
for fetal cardiac biometrics measurement in four-chamber scans. Unlike previous
paradigms [15,18,1], our proposed method uses ellipses to represent the cardiac
and thoracic regions and directly regresses the ellipses’s parameters in one-stage
without requiring additional post-processing, as shown in Fig. 1(e). We also in-



Fetal Biometric Estimation Using Ellipse Detection 3

troduce a novel feature alignment module and loss function tailored for detecting
ellipse-shaped fetal cardiac and thoracic regions, making it suitable for practical
medical object detection. Overall, our contributions are listed as follows:

— Ellipse Representation: We propose a simple ellipse representation for
fetal biometrics estimation that better depicts fetal structures. In addition,
we introduce a new ellipse feature alignment module and ellipse intersection
over union (Ellipse-IoU) loss to further regulate the training procedure.

— Optimized Biomedical Object Detection: To the best of our knowledge,
our EllipseDet is the first one-stage approach with ellipse representation and
optimized Ellipse-IoU loss for fetal biometric estimation.

— Superior Detection and Clinical Benefits: The extensive experimental
results demonstrate that our proposed method, EllipseDet, achieves superior
detection performance and offers greater clinical benefits compared to other
state-of-the-art techniques.

— Public Fetal Cardiac Dataset: We contribute the first publicly available
fetal cardiac biometrics dataset, providing a foundation for future research.

2 EllipseDet for Fetal Biometrics Estimation

2.1 Architecture Overview

The overview of our EllipseDet is shown in Fig. 2. EllipseDet is a simple, unified
network consisting of a backbone network [9], a feature pyramid network [13],
and three task-specific heads. The backbone and feature pyramid network are
designed to generate multi-scale feature maps for the subsequent head networks.
And, the heatmap and offset heads are used to determine the central location,
while the the ellipse regression head determines the parameters of the ellipse.
Ellipse Representation. As shown in Fig. 1(e), given an ellipse object, we
represent it as F; = (z;,y;,a;,b;,0;) for the i-th object with class ¢;, where
(x;,y;) denotes the center point, a; and b; are the lengths of the semi-major
and semi-minor axes, respectively, and 6; corresponds to the tilt angle. The
parameters x;, y;, a;, b;, 0; € R', where 6; € (=%, 5). Thus, we model the object
as one center and three parameters.

Backbone Network. Following prior works [25,3], the ResNet50 [9] with Fea-
ture Pyramid Network (FPN) is adopted as the backbone network to produce
multi-scale feature maps from input ultrasound image. We construct the pyramid
with levels P, through Py, where [ indicates pyramid level and P, has resolution
2! lower than the input [13]. And, all pyramid levels have 256 channels.
Regression Head. As illustrated in Fig. 2, an ellipse object is decoupled into
location and size, corresponding to the two branches in the regression head. Each
branch has four convolutional layers and interacts with each other through a fea-
ture alignment module. However, since the output feature size is smaller than
that of the input image, we use heatmap-offset aggregation [28,3] to correct
the discretization error from the output stride. Finally, there are three outputs
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Fig. 2: The network structure of EllipseDet and the explanation of the modules:
(a) Ellipse representation for thoracic and cardiac instances, (b) Visualization of
the alignment between thoracic and cardiac features using the proposed ellipse
feature alignment module.

in each head Spemﬁcally7 we predict the heatmap Y € REXD XC local off-
set O € RD*5*2 and a size § € RD*D5*3, where D is the output stride,
representing the down-sampling factor of the prediction, C' is the number of
object categories, and the three channels in size prediction represent the semi-
major axis, semi-minor axis and angle, respectively. Following standard practice
[10,28], the ground truth of the heatmap is modeled as a 2D Gaussian kernel:

(m_iﬁz)Q—’— (y_gz)Q) (1>

Y = exp(— 552
P

where the Z; = [ % | and §; = | % | are the down-sampled target center point loca-
tion and o), is the size- adaptlve standard deviation [10]. The predicted heatmap
is optimized using pixel-wise regression loss Lheatmap With focal loss [14]. Besides,
the offset is calculated as 0 = (& — Z;, %5 — @;) . The offset loss function Loy fset
is optimized with £, loss. However, the training of the size regression branch is
non-trivial. For an ellipse instance, its center and size are relevant and should
be trained as a whole, rather than as independent regression tasks. To address
this challenge, we introduce the Ellipse-IoU Loss, which is further discussed in
the Section 2.3.
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Ellipse Assembling and Biometric Estimation. During inference, we only
assemble ellipse from predictions with the highest confidence scores across all
FPN levels without any post-processing. Specifically, we first extract the peak
in the heatmap for each category independently, and its location (&, ¢;) is taken
as the center position of the cardiac or thoracic object. Meanwhile, the offset
(6x4,0y;) is obtained from O. Then, the bounding ellipse is formed with center
point p and size § as follows:

p = ((Z; + 0x;) * D, (§; + dy;) * D) §=Sz,5, = (ai, b;, 0;) (2)

Once we obtain the cardiac and thoracic parameters, we can calculate and esti-
mate the CTR biometric as: CTR = Geardiac/ dthoracic-

2.2 Ellipse Feature Alignment Module

Since conventional networks for rotated object detection have limited general-
ization to rotation variations, better feature alignment generally means better
classification and regression in object detection [11,24]. Thus, as shown in Fig.
2, we introduce a simple yet effective ellipse feature alignment module (EFAM)
in the regression head, enhancing the collaboration between location and size
features during detection. It reintegrates the decoupled location and size fea-
tures to provide shared offsets, which keeps task-specific features and mitigates
inconsistent predictions. The detailed architecture of the module is presented
in Fig. 2(b). We first use and concatenate the features Fj,. € R X5 %256 and
Fiize € RB X5 %256 of the two branches to form the task-interaction feature
Floc-size € R%X%XMQ, which contains location and size information. Then, we
incorporate a self-attention module [21] into the EFAM to further improve ellipse
feature learning. This operation allows for dynamic weighting of global rotated
ellipse object features. Given the task-interaction feature Fioc.size, W€ compute
the attention feature as follows:

’
F‘lOC—

size

= Attention(Floc.size) = softmax (QKT) \% (3)
Vi,

where @, K,V represent the queries, keys, and values of Floc size, res/pectively,

and dj is the dimension of the keys. After obtaining the feature Fj . ,., We

apply a 3 x 3 convolutional layer to output the offsets Fyogset € R D X5 x18,

Using Foset, we can adaptively align the features for location and size tasks:

'Fl/oc = fcli(::% (Flocs Foffset) Fs/izc = ;icz: (Fsizes Fottset) (4)
Here, f1°¢(-) and f5%°(.) both the standard deformable convolutional operation

[6]. Then, we can use the aligned features FllOC and F; . for regression.

2.3 Ellipse-IoU Loss

Compared with smooth-/; loss, the IoU loss considers the optimization as a
whole. However, existing ToU losses [27] are box-based and not tailored for el-
liptical biomedical objects. In this work, we derive an differential algorithm to
compute IoU for ellipse representation and achieve competitive performance.
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Fig. 3: Comparison of different Rotated Box-IoU [27] and Ellipse-IoU metrics.

As shown in Fig. 3, we first introduce the Ellipse-IoU loss based on the def-
inition of ToU, instead of relying on the compromise method of the bounding
rectangle box. This approach is more effective for accurately representing ellip-
tical objects. Based on the ellipse representation [22], the Ellipse-IoU for a given
instance is calculated as follows:

Jy" 3min(r(9). #(¢)’d¢ L, gmin(r(). /(9))*A¢
JoT dmax(r(9), #(¢))2dé % SN, Smax(r(e), #(¢))2A¢
(5)
where ¢ is the angle with the x-axis, and 7(¢) and 7#(¢) are the axis lengths
corresponding to the angle ¢.° When N approaches infinity, the discrete form

converges to the continuous form. We assume that the sampling is uniform,

leading to ¢ = 2%, which further simplifies the expression:

N>

3oy min(r(9), 7(9))?
3oLy max(r(9), 7(0))?
Since the optimal Ellipse-IoU is always 1, the Ellipse-IoU loss can be defined as:

S, min(r(¢), #(4))?
Soiv, max(r(¢), #(¢))>

Ellipse-IoU =

Ellipse-IoU =

(6)

Ellipse-IoU Loss = 1 — Ellipse-IoU =1 — (7)

2.4 Final Training Loss Function

In this study, we do not normalize the scale and instead use the raw pixel coor-
dinates directly, scaling the loss by a constant Ag;... The final loss is:

Efinal = Lheatmap + )\offsetﬁoffset + /\sizeﬁsize (8)

where A\offser and Agi.. weights for the respective loss terms. To balance the
Ellipse-IoU loss function and other loss functions, we set Ag;ze = 10 and Ao fser =
1 in all our experiments unless specified otherwise. In addition, we set the number
of samples N = 36 for the Ellipse-IoU loss function by default.

5 For any rotated ellipse instance (z, y, a, b, 0), the corresponding axis length r in ¢
can be expressed as: 7(¢) = y/(acos(¢ — 0))2 + (bsin(é — 0))2.
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Table 1: Experimental results between different methods across different metrics.

Methods ‘ Cardiac Region ‘ Thoracic Region ‘ Biometric

| DSC (%) t HD95 (pixel) || DSC (%) 1 HD95 (pixel) || Pcorr(%) T

U-Net[17]ncearos || 89.12 £ 1.62 25.63 + 4.24 93.96 + 0.67 32.74 + 4.68 90.23 + 1.37

Rotated Faster RCNN[24]cnrsazoz 86.60 + 0.72 29.79 £ 1.28 91.00 + 0.94 39.82 & 4.60 88.30 + 1.63
EllipseNet[3]viccaizozs || 77.87 £+ 2.48 48.37 £ 6.89 81.36 + 3.24 70.46 &= 8.79 | 45.15 = 15.12
Oriented RepPoints|11]jcveraoe 60.00 = 3.10  109.96 + 10.06 | 69.42 = 5.25 140.57 &+ 27.50 | 61.94 £+ 11.83
BiometryNet[l]nnccaroz: / / / / 35.98 + 12.61
E2EBM-Net[8]jcnuizozs / / / / 31.45 £ 39.96
TransUNet|1](nicarazoz 92.48 + 0.36 16.76 £ 0.72 |96.48 £+ 0.18 16.26 + 0.96 93.32 £ 1.38
EllipseDet(N=36)0vns 93.18 + 0.24 14.47 + 0.96 | 94.87 £ 0.84 16.19 + 0.86 [94.41 + 1.33

3 Experiment and Results

3.1 Experiment Protocol

Fetal Cardiac Ultrasound Dataset: The dataset comprises 300 images, and
is divided into 200 training sets, 50 validation sets and 50 test sets based on
the patient-level. The annotation work involved the participation of 2 experts
with more than 5-year clinical experience. It includes images of 217 subjects
from two medical centers within the public FETAL PLANE database [2] and
incorporates ellipse annotations for both cardiac and thoracic across all cases.

Implementation Details: All the ultrasound images are resized 512 x 512 to
before feeding into the network. Random left-right flipping, scaling, shifting and
random Gaussian noise are added for data augmentation. Following previous
studies [1], the segmentation model is trained using a combination of loss func-
tions: Dice loss function and binary cross-entropy (BCE) loss function, with a
BCE weight of 0.2. We trained all model with batch size 8 and initial learning
rate 1.25 x 1074 for 120 epochs. All experiments were conducted on a Linux
Ubuntu 16.04 system, which was equipped with 2 NVIDIA TITAN RTX GPUs.
Evaluation Metrics: All experiments were evaluated using the Dice similarity
coefficient (DSC) and 95th percentile Hausdorff distance (HD95). In addition,
we presented the measurement precision of the CTR biometric. The CTR is
formulated as R = be/br , where bo represents the length of minor axis of the
cardiac ellipse, by represents that of the thoracic ellipse [3]. Then, the CTR

precision can be defined as: Porg = (1 — m”“};t_i}%‘“ed‘) % 100%, where Rpreq and
Rirue denote the predicted CTR and the ground truth CTR, respectively.

3.2 Comparisons with State-of-the-arts

To demonstrate the effectiveness of EllipseDet, we conducted experiments across
three aspects: 1) Segmentation-based method: U-Net [17] and TransUNet [4]; 2)
Landmark-based method: E2EBM-Net [3] and BiometryNet [1]; and 3) Detection-
based method: EllipseNet [3], Oriented RepPoints [11] and Rotated Faster RCNN
[24]. For U-Net and TransUNet, we employed the ellipse-fit post-processing
method [7] to obtain final ellipse prediction results. Landmark-based methods use
landmarks to directly compute CTR biometric, while detection-based methods
utilize the inscribed ellipse of the rotated bounding box for evaluation metrics.
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Fig. 4: Visualizations of different methods are shown, with red indicating true
labels, cyan for predicted thoracic labels, and green for predicted cardiac labels.

Table 2: Ablation studies of different components of our method on the dataset.

‘ Ellipse-IoU Cardiac Region Thoracic Region ‘ Biometric

FPN‘EFAM B""'I"U\N 36 N= 100\\ DSC (%) 1 _HD95 (pixel) || DSC (%) 1 HD95 (pixel) || Porr(%) 1

8445 £ 1.62  3L11 £ 523 | 8696 £3.78  63.11 £ 8.64 | 8453 & 6.46
v 89.67 £ 050 2417 £ 356 | 9018 £ 1.95  24.80 £5.02 | 89.17 £ 1.73
v v 90.19 £ 0.69 23.23 £ 1.47 90.94 + 1.63 23.36 £ 4.55 92.10 £+ 1.82
v v v 91.24 £+ 0.33 17.35 + 1.20 92.02 £ 1.27 18.26 + 2.61 93.32 + 1.38
v v 93.18 +£ 024 14.47 + 0.96 | 9487 £0.84  16.09 + 0.86 | 94.41 & 1.33
v v 93.46 + 0.22 1455 £0.97 | 95.08 £ 0.77 15.60 + 0.88 |95.06 + 1.45

Quantitative Results: We listed the detection performance in Table 1. As ex-
pected, due to the lack of semantic information, the landmark-based E2EBM-Net
[8] and BiometryNet [1] show poor biometric estimation performance (Poergr <
40%). Compared with the U-Net [17] and TransUNet [1] methods, our method
does not require additional ellipse fitting post-processing methods and achieves
state-of-the-arts results in almost all metrics(DSC > 90%, Porr > 90%). Be-
sides, thanks to the optimization of the ellipse objects, EllipseDet also outper-
forms the other box-based methods in region segmentation and CTR estimation.

Qualitative Results: Fig. 4 shows two cases illustrating the performance of
different methods. As we can see, our EllipseDet aligns closely with true labels,
effectively capturing thoracic and cardiac regions, while other methods struggle
with boundaries. It also demonstrates superior accuracy in challenging scenarios.

3.3 Ablation Studies

Table 2 shows ablation studies on the key components of our method with the
fetal cardiac ultrasound dataset. The multi-scale features of the FPN can bring
about a 5% performance improvement. Besides, using our proposed EFAM, the
performance significantly improves by 3% in CTR estimation. Compared with
the smooth-/; and Box-IoU loss, proposed Ellipse-IoU loss function brings contin-
uous performance improvements in both segmentation and biometric estimation.
Besides, the Ellipse-IoU loss function is not sensitive to the number of samples
N. When N = 36 and N = 100, all metric performances are close (<1%).
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Conclusion

This paper proposes an one-stage ellipse detection network for the cardiac and
thoracic regions detection. In order to better represent the fetal cardiac and
thoracic, two innovative modules (EFAM and Ellipse-IoU) are proposed for the
optimization of elliptical objects. Extensive experimental results also show the
effectiveness of our proposed EllipseDet method.

Disclosure of Interests. The authors have no competing interests to declare that

are relevant to the content of this article.
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