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Abstract. Interactive segmentation tools are necessary to achieve the
desired segmentation accuracy for complex target structures, such as ves-
sels in medical images. But existing interactive methods–including those
pre-trained on large internet-scale datasets–offer limited mechanisms for
users to provide prompts that effectively control segmentation outcomes.
In particular, one-at-a-time point or text prompts are often insufficient
for correcting errors in vascular segmentation masks. To address these
limitations, we propose a novel interactive medical image segmentation
method tailored for complex vascular structures. Our approach learns
to interpret sequences of multimodal prompts–combining both text and
point inputs. By enabling dual mode prompting, the method allows users
to add semantic meaning to point-based interactions. Furthermore, by
learning from aggregated sequences of prompts, the method captures
inter-prompt relationships, enhancing its understanding and response to
user input. Quantitative evaluations on six vascular datasets demonstrate
that our method outperforms existing approaches. Additionally, it avoids
critical failure cases and consistently generates improved segmentation
masks across diverse imaging modalities and vascular anatomies.

Keywords: Multimodal Prompt · Sequence Learning · Interactive Seg-
mentation · Vessel Segmentation

1 Introduction

To address inevitable errors in automatic segmentation methods [19, 2, 8, 23],
interactive approaches [21, 3, 15] incorporate user input to maintain robust accu-
racy under diverse conditions. Recently, the Segment Anything Model (SAM) [11]
has gained attention due to its strong generalization performance. SAM can be
conditioned on various types of prompts, including points and masks, and has
been adopted as a foundational model in many downstream methods [9, 16].

However, SAM can be limited in accurately segmenting complex and slender
structures, such as vessels in medical images. Due to the intricate and fine-
grained nature of vascular structures, traditional point-based prompts may fail
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Fig. 1. Overview of the proposed method. The model incorporates sequences of mul-
timodal text and point prompts to enable interactive segmentation of complex vessel
structures, providing enhanced user control throughout the process.

to convey sufficient information. As a result, the desired accuracy may not be
achieved, even when numerous specific point prompts are provided.

In interactive segmentation, subsequent prompts are often correlated. For
instance, users may provide multiple prompts to iteratively refine segmentation
in ambiguous or challenging regions. A model that can learn the relationships
among sequential prompts is better positioned to capture user intent and enhance
segmentation performance.

To this end, we propose an interactive medical image segmentation frame-
work that integrates multimodal prompts with sequential learning. The main
contributions are as follows:

1. We propose a novel interactive medical image segmentation method for com-
plex vascular structures that leverages multimodal prompts–specifically, text
and point inputs–built on top of the SAM framework. We define a set of task-
specific text prompts (e.g., “remove” or “extend”) and introduce a process for
generating synthetic interactive segmentation sequences for training. While
Liu et al. [14] introduced the idea of combining point and text prompts, they
did not address learning from sequences of such multimodal inputs.

2. To accommodate the iterative nature of interactive segmentation, we in-
troduce a model architecture and learning strategy that support sequential
prompt integration. This enables the model to retain and utilize information
from previously provided prompts, allowing accuracy to improve progres-
sively during iterative interactions.

3. We conduct extensive experimental evaluations on multiple vessel segmenta-
tion datasets spanning various modalities, including retinal fundus [1, 5, 6],
optical coherence tomography angiography (OCTA) [13], and coronary x-ray
angiography [17]. Results demonstrate that our method enables more flexible
user interaction by leveraging richer information in multimodal prompt se-
quences, and achieves improved segmentation accuracy of complex vascular
structures compared to existing interactive methods [21, 3, 15].

A visual overview of the proposed framework is shown in Fig. 1. We assume
the availability of an initial segmentation mask along with the input image,
which may be generated by a fully automatic vessel segmentation model. Given
this image–mask pair, the user iteratively provides both point and text prompts
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Fig. 2. Model structure of the proposed method. Mask and point prompt encoders from
SAM [11], together with the text prompt encoder from CLIP [18] are adopted to enable
multimodal prompts. We propose a prompt sequence model (PSM) to combine the
sequence of multimodal prompts, which conditions the output segmentation, predicted
from the decoder of the SAM-HQ [9]. During training, the encoders are kept frozen to
maintain generalizability.

to guide the segmentation model in correcting errors. This interactive process
continues until the segmentation mask reaches a satisfactory level of accuracy.

2 Method

2.1 Segmentation Model Architecture

The proposed segmentation network comprises the backbone encoder, text en-
coder, the prompt sequence module, and the HQ decoder, as illustrated in Fig. 2.

For the backbone encoder, we adopt the components from SAM [11], which
include a Vision Transformer (ViT)-based image encoder [4], along with encoder
modules to process the point and mask inputs.

For the text prompt encoder, we utilize the CLIP [18] encoder, as a text
encoder is not publicly available within the original SAM framework. To ensure
compatibility, we append an additional linear layer to the CLIP encoder output
to match the dimensionality of the point prompt encoder’s latent representation.

The prompt sequence module (PSM) consists of a few simple components
for aggregating and encoding prompt sets. It includes either input overlay or
feature concatenation mechanisms for prompt aggregation, followed by prompt
encoding layers such as LSTM [7] or self-attention [22]. Given the variety of
possible configurations for the PSM, we present an ablation study in Sec. 3.4 to
analyze their impact.

For the decoder, we adopt the architecture of SAM-HQ [9] to better capture
the fine, high-resolution details of vascular structures. The encoded features from
the image and the current segmentation mask are combined, and the decoder is
conditioned on the encoded multimodal prompts from the PSM to produce the
updated mask prediction.
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2.2 Training Process

Generating Training Sequence Data We define a training data instance at
step k as dk = {I,Mk, pk, tk}, where I denotes the input image, and Mk, pk, and
tk represent the segmentation mask, point prompt, and text prompt, respectively.
An interactive segmentation sequence is defined as D = {d0, ..., dK−1}, where K
is the total number of interaction steps in the sequence. Input images for training
can be sourced from various public datasets [1, 5, 13], and an initial segmentation
mask M0 can be generated using a fully supervised model, such as nnUnet [8].
While users can provide tk and pk during inference, collecting large numbers
of such prompt sequences for training is costly. Although pk can be generated
by identifying erroneous regions in Mk using the GT mask MGT , generating
corresponding text prompts tk is considerably more challenging.

We address this challenge by training a text prompt predictor (TPP) on a
sample dataset with predefined text prompt classes. Given that the target re-
gions correspond to vessels, we define a set of five representative text prompt
types: tcls ∈{"make thinner", "make thicker", "make a connection", "extend",
"remove"}. For each class, we follow a class-specific procedure to generate train-
ing samples, as detailed below:

– Make thinner (thicker): Skeletonize MGT [12] and estimate the radius via
cubic Hermite spline fitting. Then, generate modified masks M thin (M thick)
by reconstructing the vessels with reduced (increased) radii.

– Connect: Detect bifurcations on the vessel skeleton using the hit-or-miss
transform [20], randomly remove segments near them to create disconnec-
tions, and reconstruct the mask M conn by restoring vessel radii.

– Extend: Randomly remove a branch from the vessel skeleton and reconstruct
the mask Mext by restoring vessel radii along the modified skeleton.

– Remove: Generate noisy masks Mrem by controlling the binarization thresh-
old of M0 so that the amount of false positive vessel pixels are increased.

Training the Network The TPP takes {I,M cls, pcls} as input and predicts the
corresponding tcls, where the superscript cls ∈ {thin, thick, conn, ext, rem}
denotes the prompt classes described above. For the network, we reuse the back-
bone encoders for image, mask, and point prompts from the model in Sec. 2.1,
and add a CLS token and a 3-layer MLP to the HQ Decoder to serve as the text
decoder.

To train the entire model, we follow a three-step process as follows:

1. Pre-training the segmentation model: the backbone image encoder and the
HQ decoder are fine-tuned, using the sample data comprising input {I,M cls, pcls, tcls}
and supervision from MGT .

2. Training the TPP: with the backbone encoders frozen, the text decoder is
trained using the sample data input {I,M cls, pcls} and supervision from tcls.

3. Training the PSM: with the backbone encoders frozen, the PSM is trained
and HQ decoder is further fine-tuned, using the synthetic sequence data
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Fig. 3. Training process using generated interactive prompt sequence data. Using the
generated text and point prompts from the text prompt predictor and point sampling
process, the prompt sequence module is trained and the HQ-decoder is fine-tuned.

with input D = {I,Mk, pk, tk}, k = 0, ...,K − 1 and supervision from MGT .
At each step k, Mk is the output of the HQ decoder at step k − 1, pk is
the center point of the largest connected component of the difference mask
between Mk and MGT (prompt point sampling), and tk is the output of the
TPP. Fig. 3 provides a visual summary of this process.

3 Experiments

3.1 Dataset

We conducted experiments using six medical imaging datasets to evaluate the
performance of the proposed network. These datasets cover various vascular
imaging domains, including retinal fundus images, OCTA (Optical Coherence
Tomography Angiography), and X-ray coronary angiography (XCA), and were
used to assess the segmentation performance of complex vascular structures.

– FIREFLY [6]: Emphasis is placed on fine vessels localized by aligning fluo-
rescein angiography (FA) and fundus images. Partitioned into 404 training
and 45 validation images.

– HRF [1]: High-resolution retinal fundus images, containing both healthy reti-
nas and cases of diabetic retinopathy and glaucoma. Partitioned into 36
training and 9 validation images.

– CHASE [5]: Retinal images from multiethnic children, offering high-resolution
vascular segmentation masks. Partitioned into 22 training and 6 validation
images.
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– OCTA-3mm and OCTA-6mm [13]: Optical Coherence Tomography Angiog-
raphy images sampled from the OCTA-500 dataset, categorized by the field
of view (FOV) captured. OCTA-3mm and OCTA-6mm are partitioned into
140, 10, 50 and 240, 10, 50 training, validation, and test images, respectively.

– ARCADE [17]: X-ray coronary angiography (XCA) images, intended for the
segmentation of major coronary arteries. Partitioned into 1000 training and
200 validation images.

3.2 Implementation details

Experiments were conducted on a single RTX 3090 GPU using SAM backbone
models from the official repository. The number of training epochs was adjusted
per dataset based on the characteristics of each training phase. In all training
phases, the batch size was set to 1. The Adam optimizer [10] was used with
an initial learning rate of 1e-5. A learning rate scheduler reduced the learning
rate by a factor of 0.5 every 10 steps. The loss function varied by phase: Binary
Cross Entropy (BCE) loss was used in Phases 1 and 3 for segmentation mask
prediction, while Cross Entropy (CE) loss was used in Phase 2 for text predic-
tion. In our experiments, the initial segmentation mask M0 is generated using
nnUNet [8], trained separately for each dataset. To focus on the regions with the
largest segmentation errors, images were cropped to 256×256 before applying
the interactive segmentation process.

3.3 Evaluation results

Comparative experiments were conducted with SAM [11] and existing single-
modal prompt-based interactive models: RITM [21], FocalClick [3], and Sim-
pleClick [15]. Mean Intersection-over-Union (mIoU) and centerline Dice score
(clDice) were used as the evaluation metrics. Measurements were made after
10 prompt interactions, using automatic prompts as described in Sec. 2.2 for
consistency. All interactive methods, including the proposed one, were either
fine-tuned or trained from scratch on each dataset, as appropriate.

Table 1 presents the quantitative evaluations across six datasets, including
p-values computed from paired t-tests. The proposed method outperforms the
comparison methods on average and achieves higher performance on all datasets
except for SimpleClick on the ARCADE dataset. For most comparisons, the p-
values indicate rejection of the null hypothesis; however, some higher p-values
were observed, likely due to the limited number of images in the datasets. The
comparison between our method with and without the PSM shows that most
performance gains come from the use of multimodal prompts, with modest ad-
ditional improvement from learning the prompt sequence.

An important observation is that the proposed method consistently improves
upon the baseline nnUNet [8] segmentation, across all datasets. In contrast, other
methods often perform worse than the baseline even after 10 prompt interactions.
These results highlight the limitations of existing methods in handling complex
vascular structures.
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Table 1. Quantitative comparative evaluation on various vascular segmentation
datasets. mIoU and clDice after 10 prompt interactions are presented, along with p-
values computed from paired t-tests.

Model
mIoU@10

FIREFLY HRF CHASE OCTA
6mm

OCTA
3mm ARCADE avg

nnUNet (baseline) [8] 55.28
(p<0.05)

51.76
(p<0.05)

69.94
(p=0.09)

76.43
(p<0.05)

82.90
(p<0.05)

72.87
(p<0.05)

68.19

SAM [11] 55.62
(p<0.05)

57.52
(p<0.05)

55.49
(p=0.13)

76.35
(p<0.05)

81.77
(p<0.05)

67.32
(p<0.05)

65.67

RITM [21] 35.76
(p<0.05)

11.58
(p<0.05)

0.00
(p<0.05)

61.28
(p<0.05)

62.16
(p<0.05)

81.68
(p=0.13)

42.07

FocalClick [3] 55.24
(p=0.19)

55.97
(p=0.10)

62.21
(p=0.18)

56.77
(p<0.05)

58.25
(p<0.05)

81.13
(p=0.27)

61.59

SimpleClick [15] 51.83
(p<0.05)

56.63
(p<0.05)

50.21
(p<0.05)

70.21
(p<0.05)

72.17
(p<0.05)

84.55
(p<0.05)

64.26

Ours (w/o PSM) 57.42
(p=0.64)

63.38
(p=0.72)

75.79
(p=0.86)

78.97
(p=0.34)

84.46
(p=0.18)

81.68
(p<0.05)

73.61

Ours (w PSM) 57.26 63.09 75.92 78.85 84.58 82.43 73.68

Model clDice@10 avg

nnUNet (baseline) [8] 62.12
(p<0.05)

72.61
(p=0.13)

83.99
(p=0.19)

89.64
(p<0.05)

93.05
(p<0.05)

85.17
(p<0.05)

81.09

SAM [11] 63.34
(p=0.06)

73.24
(p=0.10)

65.58
(p=0.12)

88.54
(p<0.05)

92.68
(p<0.05)

79.81
(p<0.05)

77.19

RITM [21] 40.82
(p<0.05)

19.83
(p<0.05)

0.00
(p<0.05)

78.63
(p<0.05)

81.65
(p<0.05)

95.69
(p=0.50)

52.77

FocalClick [3] 61.43
(p=0.05)

74.30
(p=0.33)

77.30
(p=0.18)

71.21
(p<0.05)

70.78
(p<0.05)

92.03
(p<0.05)

74.50

SimpleClick [15] 58.57
(p<0.05)

73.67
(p=0.14)

62.51
(p<0.05)

85.41
(p<0.05)

88.83
(p<0.05)

97.32
(p<0.05)

77.71

Ours (w/o PSM) 64.52
(p=0.24)

77.23
(p=0.73)

87.54
(p=0.33)

91.14
(p=0.94)

94.14
(p=0.05)

95.20
(p<0.05)

84.96

Ours (w PSM) 64.18 76.93 87.06 91.15 94.28 96.04 84.94

We provide qualitative comparisons for sample images from the HRF and
OCTA-6mm datasets in Figures 4 and 5, respectively. While SAM and Sim-
pleClick struggle to differentiate major vessels in the presence of noise, our model
maintains robust performance even in noisy environments.

3.4 Ablation Study

We present ablative comparisons for the following PSM configurations in Table 2:
the set of encoded point and text prompts are all directly concatenated and fed
into the HQ decoder (w/o PSM); the encoded point and text prompts at each
step are fed into an LSTM (LSTM); the set of encoded point prompts and text
prompts are separately concatenated, and fed into a cross-attention layer [22] as
the query and key vectors, respectively (Cross-attn); the set of encoded point
and text prompts are all directly concatenated and fed into a self-attention layer
(Self-attn, all text); and the set of encoded point prompts and only the encoded
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Fig. 4. Qualitative comparison on a sample image from the HRF [1] dataset. Black,
cyan, and magenta pixels denote true-positive, false-negative, and false-positive pixels,
respectively.

Table 2. Ablative comparative evaluation for various configurations of the PSM. mIoU
after 10 prompt interactions (mIoU@10) are presented.

Model
mIoU@10

FIREFLY HRF CHASE OCTA
6mm

OCTA
3mm ARCADE avg

w/o PSM 57.42 63.38 75.79 78.97 84.46 81.68 73.61
LSTM 57.10 61.80 75.30 79.11 84.41 80.92 73.10
Cross-Attn. 57.51 63.59 75.69 78.82 84.31 81.40 73.55
Self-Attn. (All Text) 57.46 63.01 75.78 78.58 84.39 81.74 73.49
Self-Attn. (Last Text) 57.26 63.09 75.92 78.85 84.58 82.43 73.68

last text prompt are directly concatenated and fed into a self-attention layer
(Self-attn, last text).

These results highlight the different properties of the point and text prompts.
That is, while PSM configurations using the whole set of text prompts actually
degrade the performance relative to simple concatenation. But when using only
the last text prompt together with all point prompts, the performance is im-
proved. Thus, this PSM configuration was used in Table 1.

4 Conclusion

We present a novel interactive framework that learns sequences of multimodal
prompts for segmentation of complex vascular structures. The proposed method
acts to avoid critical limitations, where interactions actually degrade baseline
segmentation results, and enable user intended improvements of segmentation
masks. We hope this work is an initial step in the development of more intelligent
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Fig. 5. Qualitative comparison on a sample image from the OCTA-6mm [13] dataset.
Black, cyan, and magenta pixels denote true-positive, false-negative, and false-positive
pixels, respectively.

interactive tools that can fully realize the operators’ intented target mask with
minimal input.

Disclosure of Interests. The authors have no competing interests to declare
that are relevant to the content of this article.
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