
Graph Laplacian Transformer with Progressive
Sampling for Prostate Cancer Grading

Masum Shah Junayed1[0000−0003−3592−4601], John Derek Van Vessem2, Qian
Wan2, Gahie Nam2 and Sheida Nabavi1[0000−0002−5996−1020]

1School of Computing, University of Connecticut (UConn), Storrs, CT 06269, USA
2Pathology and Laboratory Medicine, UConn Health, Farmington, CT 06030, USA
masumshah.junayed@uconn.edu, vanvessem@uchc.edu, wanqian720@gmail.com,

gnam@uchc.edu, sheida.nabavi@uconn.edu

Abstract. Prostate cancer grading from whole-slide images (WSIs) re-
mains a challenging task due to the large-scale nature of WSIs, the
presence of heterogeneous tissue structures, and difficulty of selecting
diagnostically relevant regions. Existing approaches often rely on ran-
dom or static patch selection, leading to the inclusion of redundant or
non-informative regions that degrade performance. To address this, we
propose a Graph Laplacian Attention-Based Transformer (GLAT) inte-
grated with an Iterative Refinement Module (IRM) to enhance both fea-
ture learning and spatial consistency. The IRM iteratively refines patch
selection by leveraging a pretrained ResNet50 for local feature extraction
and a foundation model in no-gradient mode for importance scoring, en-
suring only the most relevant tissue regions are preserved. The GLAT
models tissue-level connectivity by constructing a graph where patches
serve as nodes, ensuring spatial consistency through graph Laplacian
constraints and refining feature representations via a learnable filtering
mechanism that enhances discriminative histological structures. Addi-
tionally, a convex aggregation mechanism dynamically adjusts patch im-
portance to generate a robust WSI-level representation. Extensive exper-
iments on five public and one private dataset demonstrate that our model
outperforms state-of-the-art methods, achieving higher performance and
spatial consistency while maintaining computational efficiency. The code
is availabe: https://github.com/NabaviLab/IRM-GLAT

Keywords: Progressive Sampling · High Informative Patch · Graph
Laplacian Attention · Transformer · Histopathology.

1 Introduction

Prostate cancer remains a leading cause of cancer-related mortality worldwide,
with whole-slide image (WSI) analysis being essential for grading and risk as-
sessment [3]. The Gleason grading system, which evaluates glandular structures,
is the standard for prognosis but is challenging due to differences in expert inter-
pretation, high computational costs, and tissue artifacts like folding and staining
inconsistencies [17], [26]. Many computational pathology models treat all tissue
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patches equally, failing to focus on the most relevant areas [4]. This leads to
lower grading accuracy and increased computational burden, highlighting the
need for a more efficient and attention based sampling approach [10].

Deep learning-based prostate cancer grading predominantly relies on mul-
tiple instance learning (MIL) frameworks, where WSI-level labels are inferred
from patch-level features. While attention-based MIL models [20], [16], [19] at-
tempt to highlight relevant regions, they struggle with non-informative patches
due to their reliance on static attention mechanisms, leading to performance
degradation. Correlation-based MIL methods [24], [4], [21] improve inter-patch
dependencies but lack explicit spatial constraints, resulting in inconsistent Glea-
son grading predictions. Graph-based approaches, such as GNN-based models
[1], [2], [23], build local neighborhood graphs from high-attended patches to cap-
ture tissue-level connectivity. However, they require extensive computations and
high memory usage, limiting their practicality for real-world applications. Fur-
thermore, transformer-based models [24], [5], [14], [13] use self-attention mech-
anisms to model long-range dependencies, yet they struggle with random patch
selection, often discarding critical regions while retaining less informative ones.
These challenges highlight the need for a method that adaptively refines patch
selection while enforcing spatial constraints to preserve histological consistency.

To overcome these challenges, this work introduces the iterative refinement
module (IRM) for adaptive patch selection and graph laplacian attntion-based
transfomrer (GLAT) for spatially coherent feature learning. The IRM leverages
a pretrained ResNet50 for local feature extraction and a foundation model (FM)
[7] operating in no-gradient mode to iteratively refine patch importance scores.
This ensures that only the most relevant tissue regions contribute while elim-
inating redundant or non-informative areas. However, IRM does not explicitly
model spatial dependencies, which are essential for preserving glandular struc-
tures and histological patterns. To address this, the GLAT incorporates graph
Laplacian constraints to maintain spatial consistency by modeling histologically
similar patches as graph nodes and enforcing smooth feature transitions between
them. Additionally, a learnable filtering mechanism refines feature representa-
tion by dynamically adjusts the influence of neighboring patches through graph-
based feature propagation, ensuring spatial coherence while preserving glandu-
lar boundaries and tissue morphology. Finally, a convex aggregation mechanism
consolidates refined patch features into a robust WSI-level representation, en-
suring proportional contribution from the most informative patches for accurate
classification. The key contributions of this work are as follows:

– This work presents a novel transformer-based model that dynamically selects
and processes high-relevance regions to improve prostate cancer grading.

– The Iterative Refinement Module (IRM) introduces an efficient patch se-
lection strategy by refining patch importance scores, eliminating irrelevant
regions while reducing computational overhead.

– The Graph Laplacian Attention-Based Transformer (GLAT) enforces spa-
tial consistency through graph Laplacian constraints and enhances feature
representation via learnable filtering.
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– Extensive experiments on five public and one private dataset demonstrate
the superiority of the proposed framework over state-of-the-art methods.

2 Proposed Method

Figure 1 depicts the overview of proposed model. As shown in Figure 1, the
model first extracts patch embeddings using a pretrained ResNet50, followed
by an IRM to refine high-informative patch selection. Then, Graph Laplacian
Transformer to model spatial relationships followed by convex aggregation and
classification head for Gleason grading.

Fig. 1. Overview of the proposed prostate cancer grading model. The model extracts
patches from WSIs, scores their relevance using an IRM with ResNet-50 and a no-
gradient FM. These selected patches are then processed through a Graph Laplacian
Transformer to capture spatial relationships, followed by convex aggregation for WSI-
level feature representation, and a classification head for final Gleason grading.

2.1 Iterative Refinement Module

The IRM operates in two stages: (1) local feature extraction using ResNet50 [11]
and (2) context-aware scoring using a frozen FM, specifically the UNI model [7].
ResNet50 is used to extract local feature embeddings for each patch, while the
FM model, operating in no-gradient mode, assigns attention-based importance
scores that capture inter-patch relationships, enabling efficient global reasoning
without additional training overhead. The IRM leverages these scores to progres-
sively refine the patch subset across multiple iterations. At each step, patches are
rescored based on their contextual relevance, and the least informative ones are
discarded. This iterative filtering mechanism allows the model to concentrate
on the most diagnostically relevant tissue regions while significantly reducing
computational cost. Each patch Pi ∈ P is first passed through a pretrained
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ResNet50 model to extract feature embeddings: Ei = fResNet(Pi), Ei ∈ Rd,
where fResNet represents the ResNet50 feature extractor, and d = 512 is the di-
mensionality of the output embeddings. The embeddings E = {E1, E2, . . . , EN}
encapsulate local characteristics of the tissue patches. Next, the embeddings are
passed through the FM, which employs a self-attention mechanism to capture
pairwise relationships between patches while remaining frozen (i.e., weights are
not updated during training). The attention weights Aij between patches i and
j are computed as:

Aij = softmax

(
QiK

⊤
j√

dk

)
, Qi = WQEi, Kj = WKEj , (1)

where WQ,WK ∈ Rd×dk are fixed projection matrices from the FM that define
the query and key representations, ensuring that the learned attention mecha-
nism is based on pretrained knowledge. The softmax function normalizes the at-
tention scores, ensuring that the influence of each patch is effectively distributed
across all other patches.

Using the computed attention weights, the FM refines the embeddings (E′
i)

of each patch by aggregating information from its neighbors: E′
i =

∑N
j=1 AijVj ,

Vj = WV Ej , where WV ∈ Rd×dv projects the value vectors. The refined embed-
dings E′ = {E′

1, E
′
2, . . . , E

′
N} encode both local features and global contextual

dependencies, making them suitable for scoring the patches. These embeddings
are then used to compute patch importance scores: Si =

∑N
j=1 Aij

N , where Si

represents the average attention weight of patch Pi across all other patches,
reflecting its overall contribution to the contextual structure of the WSI.

Patch embeddings are divided in several (T ) non-overlapping subsets. At
the first iteration (t = 0), the first subset of patch embeddings are passed
through the FM, which assigns initial importance scores S

(0)
i . Based on these

scores, the top M patches with the highest scores are selected: P(0)
selected =

{P (0)
i : S

(0)
i is among the top M}. The subset of selected patches are denoted

as P(0)
selected = {P (0)

i1
, P

(0)
i2

, . . . , P
(0)
iM

}. In each subsequent iteration t, the embed-
dings of the selected patches from the previous iteration are combined with
the next subset of patches and reprocessed using the FM, which recalculates
their contextual relationships with the other patches in the subset. The refined
embeddings{E′(t)

i }, and scores {S(t)
i } are updated as :

E
′(t)
i =

∑
j∈N/T

A
(t)
ij V

(t)
j , S

(t)
i =

∑N/T
j=1 A

(t)
ij

N/T
. (2)

At each iteration, the FM updates the patch importance scores, progressively
refining the selection process by keeping only the top M patches with the highest
scores: P(t)

selected = {P (t)
i : S

(t)
i is among the top M}. At the end of T iterations,

the IRM process produces the final set of selected patches P(T )
selected is passed to

the next stage of the framework for downstream analysis.
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2.2 Graph Laplacian Transformer

To capture both spatial coherence and long-range contextual dependencies among
high-informative patches, the GLAT is introduced. The GLAT addresses a criti-
cal limitation of standard multihead self attention (MSA) by explicitly enforcing
spatial consistency. Unlike MSA, which lacks spatial regularization, GLAT mod-
els spatial and morphological relationships by connecting histologically similar
patches in a graph structure. To explicitly model the spatial relationships and
tissue-level connectivity among selected patches, we represent them as a node
in a graph G = (V t,X). Here, V t corresponds to the high-informative patches
and X defines the edges that capture histological feature similarity. To construct
the graph, an edge Xij is established between patches i and j based on their
feature similarity. The adjacency matrix W is computed using a Gaussian kernel
function to quantify the pairwise similarity between patches:

Wij = exp

(
−
∥E′

i − E′
j∥2

2σ2

)
, (3)

where Wij measures the feature similarity between patches i and j, with E′
i

and E′
j denoting their respective feature embeddings. The parameter σ con-

trols the sensitivity of similarity weighting. The degree matrix D, defined as :
Dii =

∑
j Wij , Using these matrices, the global graph Laplacian is computed as:

Lglobal = D −W .
To refine feature representations before self-attention, GLAT employs a learn-

able filtering mechanism that dynamically adjusts feature propagation across
patches. This is formulated as: Q′ = LθQ, K ′ = LθK, V ′ = LθV, where
Lθ is a trainable filter optimized during training to control feature propagation.
Lθ learns adaptive transformations that enhance discriminative features while
preserving local structural details. Using the learnable-filtered queries, keys, and
values, the modified graph laplacian attention (GLA) mechanism is computed
as:

A′ = softmax
(
Q′K ′⊤ + λLglobal√

dk

)
, (4)

where λ is a tunable hyperparameter that regulates the influence of the spa-
tial constraints, ensuring an optimal balance between feature-driven attention
and structured spatial coherence within the GLA mechanism.. The resulting at-
tention scores refine feature embeddings as: H = A′V ′, H ∈ RM×d, where
H contains individual refined embeddings for each selected patch. To generate
a global WSI representation, we apply convex aggregation [12], which ensures
that the most relevant refined patches contribute proportionally:

HWSI =

M∑
i=1

wiH
′
i, wi =

exp(θi)∑M
j=1 exp(θj)

, (5)

where θi are trainable parameters that determine the relative importance of each
patch. The softmax function is applied to θi to obtain normalized weights wi,
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ensuring that they are non-negative wi ≥ 0, and
∑M

i=1 wi = 1. This normaliza-
tion allow the model to dynamically adjust patch importance during training
while maintaining a balanced feature aggregation. Finally, the WSI representa-
tion HWSI is passed through a classification head: y = Softmax(Linear(HWSI)).

The model is trained using categorical cross-entropy loss for Gleason grad-
ing. To further encourage spatial consistency, a Graph-based feature smoothness
constraint is incorporated into the loss function:

Ltotal = LCE + α
∑
i,j

Wij∥Hi −Hj∥2, (6)

where LCE represents the loss of standard classification, and the second term en-
courages the consistency of characteristics between spatially similar patches. The
hyperparameter α balances classification performance with spatial coherence.

3 Experimental Results

3.1 Datasets and Preprocessing

This study utilizes five diverse publicly availabe datasets for evaluating the pro-
posed framework: TCGA-PRAD [9], SICAPv2 [25], GLEASON19 [22], PANDA,
DiagSet [15], and a Private dataset. The private (UConn Health) dataset in-
cludes 79 WSIs, enhancing the evaluation of the model on a smaller yet clinically
relevant dataset. For grading, the ISUP classification system was employed, cat-
egorizing samples into four classes: Grade 1 and 2 representing normal tissue,
and Grades 3, 4, and 5 indicating varying levels of malignancy. For preprocess-
ing, the CLAM [19] method was employed to generate high-quality patches from
WSIs and TMAs. The preprocessing pipeline included stain normalization, tis-
sue segmentation, and patch extraction with a fixed size, ensuring consistency
across datasets. Patches with minimal tissue content were excluded to enhance
data quality, and each patch was normalized to reduce staining variability.

3.2 Experimental Setup

All models, including the proposed method and existing baseline methods, were
trained on high-performance GPUs (NVIDIA RTX A6000) to handle large-scale
histopathological datasets. The input patches were extracted using the CLAM
[19] standard preprocessing pipeline with a patch size of 224, followed by stan-
dard data augmentation techniques such as random flipping and rotation to
enhance model robustness. A batch size of 16 was used with an initial learning
rate of 1×10−4, optimized using the Adam optimizer with a weight decay set to
1 × 10−5. The early stopping strategy was applied to prevent overfitting based
on the validation performance, and all models were trained for up to 100 epochs.
The performance of the model was assessed primarily using AUC and Cohen’s
Kappa (CK) reported as mean over five-fold cross-validation for statistical re-
liability. The proposed method was evaluated against state-of-the-art baseline
models. To ensure fair comparison, publicly available codebases were used, and
all hyperparameters were aligned with the original implementations.
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3.3 Results and Discussions

Table 1. Quantitative comparison of the proposed method against state-of-the-art
approaches on six prostate cancer grading datasets. Performance is measured using
AUC and CK. The best results are in bold, and the second-best results are underlined.

Dataset/
Methods

SICAPv2 TCGA-PRAD GLESON19 PANDA Diagset Private
AUC CK AUC CK AUC CK AUC CK AUC CK AUC CK

ABMIL [20] 0.658 0.598 0.616 0.591 0.648 0.601 0.631 0.605 0.598 0.546 0.534 0.496
TranMIL [24] 0.593 0.567 0.587 0.538 0.612 0.582 0.605 0.580 0.535 0.486 0.481 0.437

MST [4] 0.918 0.796 0.863 0.792 0.839 0.810 0.895 0.851 0.720 0.679 0.679 0.609
DASMIL [5] 0.915 0.819 0.867 0.799 0.846 0.808 0.897 0.846 0.736 0.685 0.683 0.628

WSDMPC [2] 0.819 0.785 0.835 0.805 0.826 0.808 0.860 0.806 0.678 0.618 0.650 0.605
MaskHIT [13] 0.938 0.868 0.909 0.856 0.887 0.853 0.922 0.901 0.785 0.724 0.746 0.701
SMAHM [14] 0.941 0.881 0.918 0.876 0.914 0.876 0.958 0.913 0.819 0.768 0.755 0.719

HEAT [6] 0.943 0.875 0.921 0.886 0.905 0.889 0.946 0.909 0.805 0.759 0.748 0.706
Proposed 0.951 0.892 0.923 0.885 0.913 0.892 0.963 0.936 0.836 0.791 0.781 0.731

Table 1 presents the performance comparison of the proposed method with
existing state-of-the-art approaches on six benchmark datasets, including SICAPv2,
TCGA-PRAD, GLEASON19, PANDA, DiagSet, and Private. The evaluation
metrics used are AUC and Cohen’s Kappa, both of which assess model reli-
ability and agreement with ground truth annotations. The proposed method
consistently achieves the highest AUC and Kappa scores across all datasets,
demonstrating superior grading performance. Notably, the model outperforms
the closest competitor, HEAT, on SICAPv2, TCGA-PRAD, and PANDA, while
maintaining competitive performance on the remaining datasets. The significant
improvement in CK highlights the model’s robustness in handling class imbal-
ance and variability in histopathological features.

Table 2. Ablation study evaluating the impact of key components in the proposed
framework for prostate cancer grading.

Exp. IRM Transformer CA Performance Comp. Cost
ResNet50 FM IP GLA MSA SWA AUC CK #P(M) Flops

1 ✓ ✓ ✓ ✓ × × ✓ 0.781 0.731 83.3 32.53
2 × ✓ ✓ ✓ × × ✓ 0.779 0.725 89.9 43.56
3 ✓ × ✓ ✓ × × ✓ 0.737 0.696 98.6 49.46
4 ✓ ✓ × ✓ × × ✓ 0.763 0.708 130.5 91.63
5 ✓ ✓ ✓ × ✓ × ✓ 0.754 0.709 86.7 41.58
6 ✓ ✓ ✓ × × ✓ ✓ 0.751 0.710 84.2 33.9
7 ✓ ✓ ✓ ✓ × × × 0.769 0.662 84.1 35.94

Table 2 presents an ablation study assessing the impact of individual compo-
nents within the proposed framework on Private dataset. The full model (Exp.
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1), incorporating IRM with GLA and CA, achieved the highest performance
(AUC: 0.781, CK: 0.731) with an optimal computational balance (83.3M pa-
rameters, 32.53 FLOPs). Replacing ResNet50 with ViT [8] (Exp. 2) slightly
reduced performance while increasing computational cost. Excluding FM (Exp.
3) significantly lowered AUC (0.737) and CK (0.696), demonstrating its impor-
tance in refining patch selection. Removing iterative process (IP) (Exp. 4) and
relying on random patch selection led to degraded performance and increased
overhead (130.5M parameters, 91.6 FLOPs), emphasizing the necessity of adap-
tive sampling. Substituting GLA with MSA (Exp. 5) or SWA (Exp. 6) resulted in
lower AUC, confirming the advantage of GLA in modeling spatial relationships.
Lastly, replacing CA with mean pooling (Exp. 7) significantly reduced AUC
(0.969 to 0.662), highlighting CA’s role in forming a robust WSI representation.
Figure 2 presents a comparative analysis of different attention mechanisms—

Fig. 2. Visualization of attention score maps for different mechanisms in prostate can-
cer grading.

shifted window attention (SWA) [18], MSA [8], and GLA—for prostate cancer
grading. The first column displays the original WSI. The second, third, and
fourth columns illustrate the attention heatmaps generated by SWA, MSA, and
GLA, respectively. The magnified views in the second row further highlight the
differences in feature localization. SWA captures localized features but lacks a
global perspective, resulting in fragmented attention. MSA expands attention
to broader regions but does not enforce spatial consistency, sometimes misalign-
ing critical areas. In contrast, GLA integrates graph Laplacian constraints to
maintain spatial coherence across histologically similar regions while refining
feature embeddings. Expert pathologists confirmed that the highlighted areas in
MSA and GLA correspond to cancerous regions, validating the effectiveness of
our approach. Unlike SWA and MSA, GLA preserves high-frequency histologi-
cal structures , such as glandular boundaries and morphological variations, by
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applying learnable filtering at the feature level. The heatmaps demonstrate that
GLA provides a more structured and precise attention distribution, highlighting
the importance of spatial constraints for accurate prostate cancer grading.

4 Conclusions and Future Work

This work presents a novel framework combining an Iterative Refinement Mod-
ule (IRM) for adaptive patch selection and a Graph Laplacian Attention-Based
Transformer (GLAT) for spatially coherent feature learning, achieving state-
of-the-art performance in prostate cancer grading. By refining patch selection
and enforcing spatial constraints, the model effectively captures histopathologi-
cal structures while reducing computational overhead. Extensive experiments on
public and private datasets validate its effectiveness and generalizability. How-
ever, the framework relies on fixed patch sizes, which may not fully capture
multi-scale tissue variations. Future work will explore adaptive patch selection
and cross-slide attention mechanisms to enhance contextual awareness across
distant tumor regions.
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