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Abstract. Emotion recognition plays a pivotal role in human-computer
interaction by enabling machines to perceive and adapt to human af-
fective states. While neuroimaging studies[15,20] reveal significant func-
tional lateralization between the left and right cerebral hemispheres dur-
ing emotional processing, existing EEG-based emotion recognition meth-
ods face two critical challenges: (1) difficulty in aligning cross-hemispheric
semantic features, and (2) limited generalizability across subjects and
scenarios. To address these issues, we propose ShareLink, a novel EEG-
based framework with Shared Cross-Hemispheric Structures. Our ap-
proach introduces three key innovative modules: (1) the Dynamic Shared
Hemispheric Structure (DSHS) enforces non-Euclidean hemispheric struc-
ture constraints by sharing learnable adjacency matrix parameters across
the bi-hemispheres, thereby effectively aligning semantic representations
and extracting more discriminative hemispheric asymmetry features; (2)
the Cross-Hemisphere Attention (CHA) shares similarity matrix between
the hemispheres to establish dynamic inter-hemispheric links, enhanc-
ing the model’s ability to capture interaction information while reduc-
ing parameters and mitigating overfitting risks; (3) the Shared Hemi-
spheres Mixture-of-Experts (SHMoE) leverages multiple expert modules
to abstract representations into a finite set of characteristics and em-
ploys a shared expert set to map bi-hemispheres features into a unified
space, ensuring consistent and generalizable left-right hemisphere rep-
resentations. Evaluated on SEED and SEED-IV datasets under cross-
subject paradigms, ShareLink achieves accuracies of 80.61%±6.16% and
63.33%±8.29%, demonstrating superior cross-domain generalization. This
work provides new insights into neurophysiologically inspired compu-
tational models for emotion recognition. The codes are available at:
https://github.com/Huangzx1023/ShareLink/.

* Co-first authors

https://github.com/Huangzx1023/ShareLink


2 Z. Huang et al.

Keywords: EEG · Emotion recognition · Bi-hemispheric asymmetry ·
Domain generalization.

1 Introduction

Emotions represent complex psychophysiological responses exhibited by humans
and animals in response to specific stimuli, serving as fundamental components
of adaptive behavior and social interaction. In the context of human-computer
interaction (HCI), emotion recognition has emerged as a critical capability, en-
abling systems to perceive, interpret, and respond to human affective states.
Despite humans’ innate proficiency in decoding emotional cues, machines still
face significant challenges in achieving comparable levels of emotional under-
standing. [18,2,26]

Recent studies have incorporated neuroscience insights into EEG emotion
recognition, improving model performance through neurophysiological mecha-
nisms. Neuroscientific studies reveal that although the human brain is symmet-
rical, there are differences in how the left and right hemispheres respond to the
same emotions. For instance, Herrington et al. [10] investigated the asymmetry
of emotional expression, while Costanzo et al. [4] discussed the lateralization
of emotions. Furthermore, some EEG-based emotion recognition methods have
already leveraged this asymmetry for emotion classification [29,7,5,11,17]. These
studies suggest that integrating lateralization characteristics of the brain’s hemi-
spheres into machine learning is a promising approach. However, how to more
effectively utilize these inter-hemispheric differential features to enhance EEG
emotion recognition performance remains an interesting and meaningful research
direction. Current methods face two critical challenges when processing left-right
hemispheric representations: (1) the alignment of cross-hemisphere semantic fea-
tures and (2) the cross-subject generalization capabilities of models.

When the representations of the left and right hemispheres are misaligned,
the investigation of hemispheric asymmetry is doubtful. Thus, it is essential
to align the semantic representations of the hemispheres into a shared feature
space. Inspired by differential asymmetry and Ding et al. [7], we propose a global
shared-weight modeling approach that provides an efficient and implicit align-
ment mechanism for hemispheric. For the model, shared weights ensure that
the feature extraction process is governed by the same set of parameters, thereby
reducing potential model biases introduced by extra independent modules. For
EEG signals, shared weights further guarantee that observed differences reflect
real neural variations rather than inconsistencies in feature extraction. For com-
putation, the implicit weight-sharing mechanism eliminates the need for addi-
tional alignment-specific parameters, significantly enhancing the model’s com-
putational efficiency. Specifically, we demonstrate the shareability at both the
spatial structure and time-frequency representation levels. First, at the spatial
structure level, we propose the Dynamic Shared Hemispheric Structure (DSHS),
which imposes symmetric constraints on the hemispheres by sharing learnable
adjacency matrix parameters between the left and right hemispheres. This ef-
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fectively aligns semantic representations while uncovering more discriminative
hemispheric asymmetric features. Second, at the time-frequency representation
level, we introduce a novel attention mechanism, CHA. This method aims to sim-
ulate the collaborative working mechanism of the left and right brains by sharing
a similarity matrix between the hemispheres, thereby establishing dynamic as-
sociations between the feature sets of the two hemispheres. This enhances the
model’s ability to capture inter-hemispheric interaction information while signif-
icantly reducing the number of model parameters.

Existing EEG datasets often suffer from a limited size of subjects and tri-
als, making it difficult to generalize to new subjects or scenarios. Most existing
cross-domain solutions primarily focus on loss function design while neglecting
the contribution of backbone architectures to generalization capability [16]. Fur-
thermore, Li et al. demonstrated that if a network’s architecture aligns well with
invariant correlation, it exhibits stronger robustness against distribution shifts
[13]. To tackle this problem and boost model generalizability and adaptability,
we introduce a new architecture: the Shared Hemispheres Mixture-of-Experts
(SHMoE). SHMoE employs multiple expert modules, each specializing in dis-
tinct feature subspaces. SHMoE abstracts representations to a finite character-
istics set, enhancing robustness to distribution shifts and improving the capture
of varied emotional expressions. Unlike conventional MoE approaches, SHMoE
uses a shared expert set and maps features into a unified space across both hemi-
spheres. This ensures consistent and generalizable left-right hemisphere repre-
sentations while increasing flexibility in modeling complex emotional patterns.

To address these challenges, we propose a novel ShareLink model that aims
at achieving cross-hemispheric representation alignment through a shared ex-
pert mechanism while enhancing generalization capabilities. The architecture of
ShareLink is illustrated in 1. Our methodology centers on three key innovations:

1. We introduce the Dynamic Shared Hemispheric Structure, which imposes
non-Euclidean hemispheric structure constraints through shared learnable
adjacency matrix parameters across the left-right hemisphere. This inno-
vative architecture not only effectively aligns semantic representations but
also enables the extraction of more discriminative hemispheric asymmetry
features.

2. We propose the Cross-Hemisphere Attention, inspired by the collaborative
mechanism of the human bi-hemispheres. By sharing a similarity matrix be-
tween the left and right hemispheres, it establishes dynamic inter-hemispheric
links, enhancing the model’s ability to capture interaction information. The
shared constraints also reduce parameters, lowering overfitting risks.

3. We introduce the Shared Hemispheres Mixture-of-Experts to address the
limitations of existing EEG models in generalizing to new subjects and sce-
narios. SHMoE leverages multiple expert modules to abstract representations
into a finite set of characteristics. Furthermore, SHMoE employs a shared ex-
pert set, breaking down complex task into subtasks, and maps bi-hemisphere
features into a unified space. This design ensures consistent and generalizable
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left-right hemisphere representations while increasing flexibility in modeling
complex emotional patterns.
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Fig. 1. The architecture of ShareLink.

2 Method

2.1 Problem formulation

The objective of this study is to achieve cross-subject emotion recognition using
multi-channel EEG signals. We propose a deep learning model fθ : X → Y that
maps EEG signal features X to emotion category probability distributions Y . By
optimizing the model parameters θ on the training dataset (X(train), Y (train)),
our goal is to ensure high classification accuracy for fθ on the cross-subject test
dataset (X(test), Y (test)). Notably, the training set and test set do not contain
data from the same subject.

2.2 Dynamic Shared Hemispheric Structure

Existing non-Euclidean structures for EEG-based emotion recognition typically
target all electrodes [23]. However, this approach faces two limitations: 1) The
excessive degrees of freedom in the non-Euclidean structure make it prone to
overfitting, and 2) difficulties in achieving semantic alignment between the left
and right hemispheres. To address these issues, we propose DSHS, which en-
forces symmetric constraints on the non-Euclidean structure of the hemispheres
by sharing learnable adjacency matrix parameters between the left and right
hemispheres. This effectively aligns semantic representations while uncovering
more discriminative hemispheric asymmetric features. The construction process
is as follows:

We constructed a dynamically learned adjacency matrix W ∈ RC/2×C/2

shared between the left and right hemispheres to characterize the relationships
between vertex nodes, where C is the number of channels. Let W∗ denote the
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optimal learned adjacency matrix, and L∗ denote the Laplacian matrix of the
hemispheric graphs.G. L∗ = D −W∗ ∈ RN×N , where D ∈ RC/2×C/2 is a diag-
onal matrix and the i-th diagonal element can be calculated by Dii =

∑
j wij .

Especially, hemispheric graph Gα = {Xα,L
∗} share Laplacian matrix, where

α ∈ {left, right} denote left and right hemispheres, respectively. The graph con-
volution of the signal xα with the vector of U∗g (Λ∗) defined by the spatial
filtering g (L∗) can be expressed as, Eα = g (L∗)xα = U∗g (Λ∗)U∗Txα, where
Λ∗ = diag

([
λ∗
0, λ

∗
1, . . . , λ

∗
N−1

])
represents a diagonal matrix.

Since directly computing the expression of g (Λ∗) is challenging, we employ
K-th order Chebyshev polynomials to simplify the calculation process[6]. Specif-
ically, let λ∗

max denote the largest diagonal element of Λ∗. We normalize Λ∗ as
Λ̃∗ = 2Λ∗/λ∗

max−IN , where IN is the N×N identity matrix. This normalization
ensures that the diagonal elements of Λ̃∗ lie within the interval [−1, 1]. Thus,
we obtain that g (Λ∗) can be approximated by:

g (Λ∗) =

K−1∑
k=0

θkTk

(
Λ̃

∗)
, (1)

where θk is the coefficient of Chebyshev polynomials, and can be recursively
calculated according to the following recursive expressions:{

T0(xα) = 1, T1(xα) = xα

Tk(xα) = 2xTk−1(xα)− Tk−2(xα), k ≥ 2.
(2)

According to (1), we obtain the graph convolution operation of Eα can be
rewritten as:

Eα =

K−1∑
k=0

θkTk

(
L̃∗

)
xα. (3)

where L̃∗ = 2L∗/λ∗
max − IN .

2.3 Cross-Hemisphere Attention

Inspired by the collaboration between the left and right hemispheres of the hu-
man brain [19], we propose CHA. CHA aims to simulate the collaborative work-
ing mechanism of the left and right brains by sharing a similarity matrix between
the hemispheres, thereby establishing dynamic associations between the chan-
nels of the two hemispheres and enhancing the model’s ability to capture inter-
hemispheric interaction information. Additionally, through shared constraints,
this module reduces the number of model parameters and mitigates the risk of
overfitting. The following formulas show the framework of this part. To simplify
computation, we prove the following theorem:

Theorem 1. Define the Query, Key, and Value matrices as follows:

– For the left brain: Ql = ElWl, Kl = ErWr, and Vl = (El −Er)WV.
– For the right brain: Qr = ErWr, Kr = ElWl, and Vr = (Er −El)WV.
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Therefore, Sl = Sr
T for the left and right hemispheres similarity matrix.

Proof. Sl for the left brain is computed as the scaled dot product of the Query
Q and the transpose of the Key K:

Sl =
QlKl

T

√
dk

.

For the right brain, we also follow the above representation:

Sr =
QrKr

T

√
dk

=
(ErWr)(ElWl)

T

√
dk

=
KlQl

T

√
dk

=
(QlKl

T )T√
dk

= Sl
T .

This completes the proof.

Let S ∈ RC/2×C/2 denote the similarity matrix of the left hemisphere. The
output of CHA can be represented as:

Al = SV ∈ RC/2×dv ,Ar = STV ∈ RC/2×dv , (4)

Additionally, to prevent the dot product values from becoming too large, we
apply a scaling operation to the raw attention scores. After that we apply the
softmax function, converting the scaled scores into a probability distribution.

The outputs of the left and right brains, Al and Ar, aggregate informa-
tion from each other, enabling bidirectional information interaction. By sharing
the similarity matrix between the left and right hemispheres, the model estab-
lishes dynamic inter-hemispheric links, which significantly enhance its ability to
capture interaction information. Additionally, the shared constraints reduce the
number of parameters, thereby mitigating the risk of overfitting.

2.4 Shared Hemispheres Mixture-of-Experts

To overcome the generalization limitations of EEG emotion recognition models
caused by small datasets and loss-based cross-domain methods, we propose the
Shared Hemispheric Mixture-of-Experts. Inspired by the observation that archi-
tecture alignment with invariant correlations enhances robustness to distribution
shifts [13]. SHMoE employs multiple expert modules, mapping features and ex-
pert embeddings onto a hypersphere and performing L2 normalization. Each
module specializes in handling different emotional attributes, making router de-
pendent only on directional alignment. SHMoE abstracts representations to a
finite characteristics set, enhancing robustness to distribution shifts and im-
proving the capture of varied emotional expressions.

For MoE models, linear routers are commonly adopted in vision tasks [22],
while recent studies in NLP demonstrate that the cosine router achieves superior
performance in cross-lingual language tasks [1]. In the cosine router, the input
embedding is first projected onto a hypersphere, followed by multiplication with
a learnable embedding matrix E ∈ RN×de , where N is the number of experts.
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The SHMoE implementation process is as follows: First, we fuse Al and Ar by
concatenation, A = [Al,Ar], where [·, ·] represents the concatenation operation.

G(A) = TOPk

(
Softmax

(
ETWA

τ∥WA∥∥E∥

))
, (5)

where W is the learnable gate parameter, and τ is a hyper-parameter. Inspired
by [8,30,13], we opine that the linear router would face difficulty in EEG-based
emotion recognition. For example, an EEG signal corresponding to a happy
emotion in one subject is likely more similar to other EEG signals from the
same subject than to those from other subjects. This issue can be alleviated
by incorporating a codebook for emotional attributes and matched filters for
detecting specific emotional patterns.

Subsequently, based on the expert indices selected by G(A), the data from
different channels are routed to their corresponding expert modules. Finally, the
results from all channels are aggregated through summation to produce the final
outputs Ml and Mr.

3 Experiment and Discussions

3.1 Datasets and Pre-process

In our experiments, we utilized two publicly available EEG emotion datasets,
SEED [28] and SEED-IV [27]. The detailed information of these datasets is as
follows: SEED EEG data are from 15 subjects with 62 channels, recorded during
the viewing of negative, neutral, and positive film clips across three sessions
per subject (5 clips/emotion, 15 trials per session). Each trial contains 185-238
samples, yielding about 3,400 samples/session. Compared to SEED, SEED-IV
follows the same settings but introduces an additional emotion, fear. Film clips
across three sessions per subject (6 clips/emotion, 24 trials per session). Each
trial contains 12–64 samples, yielding about 830 samples/session.

To ensure a fair comparison with existing studies, we directly adopted the pre-
computed differential entropy from the SEED and SEED-IV, using segmented
time windows as input which were smoothed using a Linear Dynamic System
for each EEG channel across five frequency bands. Finally, from the full-brain
data comprising 62 channels, we extracted left hemisphere data consisting of
left-brain channels and midline channels, and right hemisphere data consisting
of right-brain channels and midline channels. Notably, the training set and test
set do not contain data from the same subject.

3.2 Experiment Setting

ShareLink was trained with a batch size of 512 and 0.1 dropout, using the
AdamW optimizer and cross-entropy loss. Hyperparameters were selected via
grid search and include learning rate {1e-3,1e-4,1e-5,1e-6}, embedding dimen-
sions {16,32,64}, and 62 experts. Training runs for 500 epochs.
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We conducted cross-subject experiments on both the SEED and SEED-IV
datasets. In this experiment, we employed the Leave-One-Subject-Out (LOSO)
cross-validation method. Specifically, for both datasets, the EEG signals of a
single subject were used as the test set, while the EEG signals of the remain-
ing subjects were used as the training set. The average accuracy and standard
deviation across all subjects were adopted as the final evaluation metrics.

3.3 Comparative Results

We present the comparative results on the SEED and SEED-IV datasets with
other transfer methods. All baseline methods share the same experimental setup
as ours, and their results are all taken from the references. The results are sum-
marized in Table 1. The results demonstrate that ShareLink consistently out-
performs all other methods on both datasets, achieving the highest classification
accuracy with relatively low standard deviations. This indicates that ShareLink
is not only more accurate but also more stable across different subjects compared
to the other methods. ShareLink achieves improvements of 6.86% on SEED and
24.85% on SEED-IV, compared to the best referred method. In summary, Share-
Link demonstrates superior accuracy and stability compared to both transfer
methods, and it yields the best results across both datasets, indicating strong
generalization ability.

Table 1. Cross-subject classification accuracy (mean/standard deviation) on SEED
and SEED-IV.

Method SEED SEED-IV
ACC STD ACC STD

ULSIF[12] 51.18% 13.57% 32.99% 11.05%
STM[3] 51.23% 14.82% 39.39% 12.40%
TCA[21] 63.64% 14.88% 56.56% 13.77%
DAN[14] 65.84% 2.25% 32.44% 9.02%
DCORAL[24] 66.29% 4.53% 37.43% 3.08%
DDC[25] 68.99% 3.23% 37.71% 6.36%
DANN[9] 75.08% 11.18% 47.59% 10.01%
ShareLink 80.61% 6.16% 63.33% 8.29%

3.4 Ablation Study

ShareLink integrates three core modules: DSHS, CHA, and SHMoE. To evaluate
the contribution of each module, we conducted ablation studies by sequentially
removing DSHS, CHA, and SHMoE. Specifically, removing DSHS reduced accu-
racy by 12.14% and 16.50%, while removing CHA led to decreases of 16.30% and
20.39%, respectively. Similarly, the absence of SHMoE resulted in performance
drops of 11.74% and 16.17%. The observed degradation across all scenarios high-
lights the critical role of each module in enhancing model performance.
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Table 2. Ablation study for cross-subject classification on SEED and SEED-IV

Method SEED SEED-IV
ACC STD ACC STD

w/o DSHS 70.82% 6.29% 52.88% 9.31%
w/o CHA 67.47% 9.04% 50.42% 4.08%
w/o SHMoE 71.14% 8.20% 53.09% 9.11%
ShareLink 80.61% 6.16% 63.33% 8.29%

4 Conclusion

We propose ShareLink, enhancing EEG-based emotion recognition via hemi-
spheric asymmetry and interactions, addressing two limitations: hemispheric se-
mantic misalignment and cross-subject generalizability. Thus, we develop three
modules: DSHS aligns hemispheric features by shared adjacency matrix; CHA
models inter-hemispheric dynamics through shared similarity matrices; and SHMoE
transforms bilateral representations into a shared latent space. Validated on
SEED and SEED-IV, ShareLink achieves 80.61%±6.16% and 63.33%±8.29%
accuracy in cross-subject trials. ShareLink provides new insights into neuro-
physiologically inspired computational models for emotion recognition.
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