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Abstract. Multiple Instance Learning (MIL) effectively analyzes whole
slide images but faces overfitting due to attention over-concentration.
While existing solutions rely on complex architectural modifications or
additional processing steps, we introduce Attention Entropy Maximiza-
tion (AEM), a simple yet effective regularization technique. Our inves-
tigation reveals the positive correlation between attention entropy and
model performance. Building on this insight, we integrate AEM regu-
larization into the MIL framework to penalize excessive attention con-
centration. To address sensitivity to the AEM weight parameter, we
implement Cosine Weight Annealing, reducing parameter dependency.
Extensive evaluations demonstrate AEM’s superior performance across
diverse feature extractors, MIL frameworks, attention mechanisms, and
augmentation techniques. Here is our anonymous code: https://github.
com/dazhangyul23/AEM.
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1 Introduction

Whole slide images (WSIs) are widely recognized as the gold standard for nu-
merous cancer diagnoses, playing a crucial role in ensuring precise diagnosis
[2], prognosis [28], and the development of treatment plans [2I]. In recent years,
attention-based multiple instance learning (ABMIL) [9] has emerged as a promis-
ing approach for WSI analysis. However, recent studies have uncovered overfit-
ting issues in MIL due to factors like limited available data [23I3TI32/TT], class
imbalance [32], and staining bias [1233].

In the attention mechanism, attention values represent the importance or rel-
evance of instances to the bag prediction, influencing both prediction accuracy
and result interpretability. Relevant studies [29/32] have revealed that excessive
concentration of attention values in ABMIL hinders model interpretability and
results in overfitting [32]. There have been several solutions for alleviating at-
tention concentration. Masking-based methods [I6/23I32] mask out the instances
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Table 1: Comparison of WSI classification methods addressing overfitting.

Method ‘ Extra Modules/Processing

DTFD-MIL |31] Double-tier attention mechanisms

IBMIL [12] New training stage of interventional training from scratch
C2C [19] Clustering and sampling process

MHIM-MIL [23] Teacher model for masking easy instances

ACMIL [32] Multiple branch attention for extracting pattern embeddings
DGR-MIL [I] |Instance center pushing and DPP-based vector orthogonality
AEM (ours) ‘ None

with the highest attention values, allocating their attention values to remaining
instances. Clustering-based methods [I9[7] group instances into clusters and ran-
domly sample instances from these clusters, ensuring attention values are not
overly focused on minority instances. ACMIL [32] generates the heatmap by
averaging the attention values generated by multiple attention heads, thereby
avoiding the over-concentration of attention values. DGR-MIL [1] addresses this
through learnable global vectors capturing diverse patterns via cross-attention,
with strategies to push vectors toward positive instance centers and enforce or-
thogonality using DPP-based diversity loss. However, most solutions add com-
plexity and computational overhead, limiting flexibility (see Table .

To address the limitations of existing complex solutions, we propose At-
tention Entropy Maximization (AEM), a lightweight yet powerful approach for
mitigating attention concentration and MIL method overfitting. Our empirical
analysis establishes a positive correlation between attention entropy and model
performance, which forms the foundation for developing AEM. The approach
integrates a negative entropy loss term for attention values into the standard
MIL framework (Figure , promoting a more uniform distribution of attention
across instances. To address sensitivity to the AEM weight parameter, we intro-
duce Cosine Weight Annealing, reducing parameter dependency. Unlike existing
overfitting mitigation techniques, AEM requires no additional modules or pro-
cessing steps, enabling seamless integration with current MIL frameworks while
maintaining computational efficiency.

Our experimental evaluations on three datasets (CAMELYON16, CAME-
LYON17, and our in-house LBC dataset) demonstrate AEM’s superior per-
formance over existing methods. Furthermore, extensive experiments showcase
AEM’s versatility, effectively combining with five feature extractors (Lunit pre-
trained ViT-S [10], PathGen-CLIP pretrained ViT-L [22], UNI pretrained ViT-L
[3], CONCH pretrained ViT-B [I4], and GigaPath pretrained ViT-G [27]), Sub-
sampling augmentation technique, two advanced MIL frameworks (DTFD-MIL
[31] and ACMIL [32]), and three attention mechanisms (DSMIL [11], LongNet [6]
and MHA [24]). These results underscore AEM’s potential as a widely applicable
enhancement to existing MIL methodologies in medical image analysis.
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Fig. 1: Overview of plugging AEM into MIL framework. AEM adds only a neg-
ative entropy regularization for attention values to the regular MIL framework.

2 Method

2.1 ABMIL for WSI Analysis

MIL formulation. For WSI classification, we have the WSI X with slide-level
label Y. Due to the extreme resolution of WSIs (50,000 x 50,000 to 100,000 x
100, 000), direct training is computationally infeasible. ABMIL [9] addresses this
by segmenting WSIs into non-overlapping patches {x,})_; and employing a
two-step process to predict the slide label Y.

Extracting instance features. Current MIL methods typically use features
from a frozen backbone like ImageNet-pretrained ResNet. Recent studies [1514]
show that using encoders pre-trained with self-supervised learning and vision-
language pretraining improves performance. To comprehensively verify AEM’s
effectiveness, we use five feature extractors: DINO pretrained ViT-S/16 [I0],
PathGen-CLIP pretrained ViT-L/14 [22], UNI pretrained ViT-L [3], CONCH
pretrained ViT-B [14], and GigaPath pretrained ViT-G [27]).

Aggregating instance features and outputting bag predication. ABMIL
aggregates instance embeddings into the bag embedding using a gated attention
operator:

N
z= z:anhn7 (1)
n=1

where a,, = o(h,,) represents the attention values for the n-th instance, h,,. The
bag prediction is then obtained through an MLP layer: Y = 9(2).

While we initially demonstrate our approach with ABMIL, our proposed
AEM method (detailed in Section can be effectively applied to various at-
tention mechanisms, including DSMIL [IT], MHA [32], and LongNet [27].

2.2 Attention Entropy Maximization

Motivation. Studies show that low attention entropy can cause training insta-
bility and poor generalization in attention-based models [30J26//5]. To investigate
this in WSI classification, we trained ABMIL with 200 different random initial-
izations while keeping training, validation, and test sets fixed. Figure 2| reveals a
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Fig.2: There exists a positive correlation between AUROC values and entropy
of attention values across experimental seeds. One point denotes the outcome of
a single seed on the LBC dataset.

positive correlation between AUROC performance and attention entropy values
on the test set, with higher entropy consistently associated with better classifi-
cation results. These findings highlight the importance of attention diversity for
effective WSI analysis, demonstrating that maintaining high attention entropy
improves model performance and generalization.

Implementation. AEM maximizes the entropy H(A) of attention values, A =
{a, })_,, by formulating it as negative entropy [17]:

Laem = _H(A) = Zan IOg Ay, . (2)

This encourages consideration of more informative regions in WSIs, poten-
tially improving generalization. The final objective is formulated as:

Ltotal = Lce + )\Laemy (3)

where A is a hyperparameter that controls the relative contribution of the AEM
regularization term to the total loss function, balancing it against the task loss
Lce. Too small values lead to insufficient instance diversity, while too large
values force uniform attention distribution, reducing to mean-pooling behav-
ior—consistently shown inferior to attention-based MIL approaches [9].

We adopt Cosine Weight Annealing [13] as our scheduling strategy, which
gradually reduces A following a cosine curve. This approach naturally supports
AEM’s progression: initially maintaining high entropy for broad instance explo-
ration when features are less reliable, then transitioning to focused attention as
discriminative capabilities improve.

Discussion. AEM serves a similar role to the KL-divergence loss in C2C [19] by
promoting attention distribution, but with key differences. AEM operates glob-
ally across all instances, while C2C’s KL-divergence works only within individual



Title Suppressed Due to Excessive Length 5

Table 2: The performance of different MIL approaches across three datasets and
two evaluation metrics. The most superior performance is highlighted in bold.

Method ‘ CAMELYON-16 CAMELYON-17 LBC
| Fl-score AUC Fl-score AUC Fl-score AUC
SSL pretrained ViT-S (Lunit [10])
Clam-SB 0.925+0.035 0.969+0.024 0.52340.020 0.846+0.020 0.6174£0.022 0.8654+0.018
LossAttn [2 0.908+0.031 0.928+0.014 0.5754+0.051 0.865+0.016 0.621£0.012 0.843+40.006
TransMIL [18] 0.922+0.019 0.943+0.009 0.554£0.048 0.792+0.029 0.539+0.028 0.8054+0.010
DSMIL 0.943+0.007 0.966+0.009 0.53240.064 0.804+0.032 0.562+0.028 0.82040.033
IBMIL [I2] 0.912+0.034 0.954+0.022 0.55740.034 0.850+£0.024 0.604+0.032 0.834+0.014
MHIM-MIL [23] 0.932+0.024 0.970+0.037 0.541+0.022 0.845+0.026 0.658+0.041 0.872+0.022
ILRA 0.904+0.071 0.940+£0.060 0.63140.051 0.860£0.020 0.618+0.051 0.859+40.017
ABMIL [9] 0.91440.031 0.945+0.027 0.52240.050 0.853+0.016 0.595+0.036 0.83140.022
AEM (ours) 0.947+0.003 0.974+0.007 0.647+0.007 0.887+0.013 0.6641+0.021 0.879+0.013
VLM pretrained ViT-L (PathGen-CLIP [22])
Clam-SB [15] 0.941+0.014 0.960+0.015 0.62240.031 0.899+0.012 0.641+0.025 0.87040.013
LossAttn [20] 0.948+0.004 0.981+0.017 0.667+0.023 0.891+0.009 0.657+£0.035 0.874£0.006
TransMIL [18] 0.951+0.024 0.968+0.028 0.656+0.021 0.892+0.014 0.573+£0.019 0.849+0.010
DSMIL [I1] 0.895+0.038 0.949+0.017 0.58240.062 0.887+0.013 0.586+£0.024 0.84840.010
IBMIL 0.935+0.014 0.953+£0.009 0.629+40.027 0.884+0.016 0.640£0.010 0.86740.007
MHIM-MIL [23] 0.946+0.033 0.984+0.016 0.59440.090 0.912+40.009 0.660+£0.030 0.890+0.007
ILRA 0.929+40.018 0.963+£0.019 0.66240.048 0.914+0.017 0.626+0.028 0.864+0.014
ABMIL 0.953£0.018 0.97240.010 0.61040.025 0.864+0.017 0.6214£0.023 0.8534+0.013
AEM (ours) 0.967+0.025 0.988+0.013 0.688+0.016 0.905+0.005 0.6914+0.032 0.884+40.010
SSL pretrained ViT-L (UNTI [3])

ABMIL [9] 0.968+0.011 0.996+0.003 0.60540.047 0.885+0.015 0.580+0.023 0.84440.024
AEM (ours) 0.975+0.003 0.998+0.003 0.6331+0.024 0.863+£0.017 0.645+0.021 0.870+0.015
SSL pretrained ViT-G (GigaPath [27])

ABMIL [9] 0.978+£0.007 0.984+4+0.009 0.5554+0.040 0.880+0.023 0.623+0.023 0.866+0.014
AEM (ours) 0.981+0.009 0.982+0.011 0.571+0.029 0.886+0.014 0.663+0.017 0.903+0.014
VLM pretrained ViT-B (CONCH [I4])

ABMIL 0.932+40.015 0.952+0.017 0.52940.022 0.862+0.014 0.589+0.036 0.84940.023
AEM (ours) 0.942+0.011 0.961+0.016 0.581+0.013 0.893+0.010 0.656+0.022 0.889+0.011

clusters. Unlike C2C’s strict uniform enforcement, AEM’s negative entropy ap-
proach provides flexibility by penalizing extreme concentration while allowing
meaningful non-uniform distributions when appropriate [8]. Our experiments
confirm that replacing AEM with KL-divergence decreases performance.

3 Experiments

3.1 Experimental setup

Datasets. We evaluate AEM on three WSI datasets: CAMELYON16 (C16)
[2], CAMELYON17 (C17) [2], and LBC. C16 contains 270 training WSIs from
hospital 1 (split 9:1 for training/validation) and 130 testing WSIs from hospital
2. For C17, we use 500 WSIs in total, with 300 WSIs from three hospitals for
training/validation (split 9:1) and 200 WSIs from two other hospitals for testing
to evaluate OOD performance. The LBC dataset includes 1,989 WSIs of cervical
cancer across four cytological categories: Negative, ASC-US, LSIL, and ASC-
H/HSIL, split into 6:2:2 ratios for training, validation, and testing respectively.
Implementation Details. Following [I5], we process WSIs by extracting 256 x
256 patches at x20 magnification. The model architecture consists of a feature
dimension reduction layer, gated attention network, and prediction layer, opti-
mized using Adam with cosine learning rate decay. Hyperparameter selection was
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(a) Subsampling (b) DTFD-MIL (c) ACMIL

Fig. 3: Performance comparison before and after plugging AEM into the Subsam-
pling augmentation (a) and two advanced MIL frameworks, DTFD-MIL (b) and
ACMIL (c). C17/SSL indicates results on C17 using an SSL-pretrained back-
bone. AEM improves their performance on 17 out of 18 terms.

= DSMIL
e DSMIL+AEM

- MHA = LongNet
m== MHA+AEM m== LongNet+AEM

CI6/SSL CIGNLP CL7/SSL CLTVLP LBC/SSL LBCAVLP

(a) DSMIL (b) MHA (¢) LongNet

CI6/SSL CIGNVLP CL7/SSL CLTVLP LBC/SSL LBCAVLP ci6 =¥

Fig.4: Performance comparison before and after plugging AEM into DSMIL,
MHA, and LongNet attention mechanisms. For LongNet, we used the pretrained
Gigapath checkpoint. AEM improves performance on 11 out of 14 terms.

based on validation performance optimization, with default A values of 0.001,
0.1, and 0.2 for C16, C17, and LBC respectively. We report macro-AUC and
macro-F1 scores averaged over five runs with different random initializations.

3.2 Main results

AEM’s effectiveness across different feature extractors. TablePlevaluates
MIL approaches across three datasets using five backbones. For Lunit-pretrained
ViT-S and PathGen-CLIP-pretrained ViT-L, we compare AEM against several
advanced MIL methods, with our approach achieving superior performance in 10
out of 12 metrics. With ViT-S, AEM leads across all metrics, while with ViT-L,
it dominates in all Fl-scores and C16 AUC, with only slight trails in C17 and
LBC AUC. For the remaining three backbones (UNI, GigaPath, CONCH), AEM
outperforms ABMIL in 16 out of 18 metrics, demonstrating significant improve-
ments across diverse architectures and pretraining strategies. These consistent
results confirm AEM’s effectiveness as a versatile enhancement applicable to
various feature extractors.

AEM enhances Subsampling, DTFD-MIL, and ACMIL. Figure[3aldemon-
strates AEM’s ability to consistently boost performance across multiple MIL
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Fig. 5: Sensitivity analysis for hyperparameter A. Choosing an appropriate A is
critical for AEM. Moreover, including CWA can improve the stability of AEM.

frameworks. While Subsampling, DTFD-MIL, and ACMIL all show improve-
ments over standard ABMIL, integrating AEM further elevates their perfor-
mance. With Subsampling, AEM delivers additional gains, especially in cases
where subsampling alone had limited impact. For DTFD-MIL, AEM contributes
2% AUC improvements on C17 and LBC datasets across all backbones. Even
when paired with ACMIL, which addresses similar attention concentration is-
sues, AEM still provides notable enhancements on C16 and C17 datasets while
maintaining comparable performance on LBC. These consistent improvements
across different methods highlight AEM’s versatility as a complementary en-
hancement for diverse MIL approaches.

Performance gains of AEM across different attention mechanisms. To
validate AEM’s versatility beyond gated attention, we applied it to three addi-
tional mechanisms: DSMIL [IT], MHA [32], and LongNet [27]. Figure |4| shows
AEM’s impact across datasets and feature extraction methods. For DSMIL,
improvements are most significant with VLM features on C17/SSL and LBC
datasets, though C16/SSL performs slightly better without AEM. MHA shows
more modest benefits, particularly on C17 and LBC datasets, likely due to its
inherent capacity for learning diverse attention values [ITJ32]. With LongNet us-
ing pretrained Gigapath [27] checkpoints, AEM consistently improves finetuning
results on both CAMELYON datasets. AEM’s effectiveness varies by context,
showing particular promise with DSMIL+VLM features, complex datasets, and
LongNet architectures.

3.3 Further analysis

Ablation Study. We examined the role of A across three datasets, testing values
{0,0.001,0.002,0.005,0.01, 0.02,0.05} on C16, and {0,0.01,0.02,0.05,0.1,0.2,0.5}
on C17 and LBC, with A = 0 representing baseline ABMIL. Figure[§|reveals that:
1) optimal A values are approximately 0.01 for C16 and 0.2 for C17/LBC; 2)
CWA substantially improves stability, especially at higher A values where AEM
without CWA degrades; 3) both AEM variants outperform the ABMIL base-
line; and 4) CWA enables effective operation at larger A values by adaptively
modulating attention weights during training.
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Fig. 7: Performance comparison between ABMIL [9] and our AEM on LBC test
set throughout training. ABMIL shows clear overfitting with increasing test loss
and declining metrics, while AEM effectively prevents this issue.

Superiority of Negative Entropy over KL Divergence. Comparing loss
formulations for alleviating attention concentration, Figure [6a] shows AUROC
results across three datasets using VLM pretrained embeddings. The negative
entropy consistently outperformed both ABMIL baseline and KL divergence
approaches. While KL divergence improved results on LBC, it degraded per-
formance on CAMELYON datasets. Negative entropy provides more consistent
and stable improvements, making it the preferred formulation for AEM.

AEM effectively mitigates the overfitting. Figure [7] reveals that AEM
maintains lower test loss, higher accuracy, and superior F1l-score and AUROC
compared to ABMIL across training epochs, with ABMIL showing signs of over-
fitting after epoch 20-30. AEM’s consistent outperformance across all metrics
demonstrates its superior generalization ability and robustness, establishing it
as a more reliable approach less susceptible to overfitting than ABMIL.

AEM effectively mitigates the attention concentration. Figure[6b]demon-
strates how AEM effectively mitigates the attention concentration problem ob-
served in ABMIL for the LBC test set. The ABMIL curve (purple) rises sharply,
indicating that it focuses most of its attention on a small subset of patches. In
contrast, the AEM curve (brown) shows a much more gradual increase, suggest-
ing a more balanced distribution of attention across a larger number of patches.
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4 Conclusion

This paper introduces AEM, a novel approach addressing attention concentra-
tion and overfitting in MIL frameworks through negative entropy regularization
of instance attention distributions. AEM effectively mitigates these issues while
offering advantages in simplicity—requiring no additional modules or process-
ing. Our experiments demonstrate AEM enhances performance when combined
with various MIL frameworks, attention mechanisms, and feature extractors,
positioning it as a versatile enhancement for medical image analysis.
Limitation and future work. While currently focused on WSI classifica-
tion, future work will extend AEM to survival and mutation prediction tasks.
Though we introduced cosine weight annealing to stabilize training, the initial
weight parameter still requires manual tuning. Future research will develop au-
tomatic weight adjustment mechanisms and investigate the theoretical bounds
of entropy-based attention regularization.
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