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Abstract. The EOS imaging system is a low-dose, biplanar X-ray modal-
ity offering high-fidelity anatomical visualization in standing and seated
positions, benefiting total hip arthroplasty (THA) by providing accu-
rate skeletal alignment and implant positioning pre- and postoperatively.
Evaluating bone mineral density (BMD) and muscle mass before surgery
is useful for predicting outcomes and tailoring rehabilitation. Although
CT and DXA can assess these metrics effectively, they increase cost and
radiation exposure. Recent advances in deep learning have enabled BMD
and muscle mass estimation from plain radiographs, among which one
promising approach with potentially high generalizability to new modal-
ity utilized 2D–3D registration with CT of the same patient in training
data preparation. However, limited EOS availability constrains large data
collection. We devised and validated a deep learning framework to pre-
dict BMD and muscle mass from EOS images by fine-tuning a model
trained on plain radiographs. Our dataset comprised 77 pairs of pre- and
postoperative EOS images and CT scans, then underwent 2D–3D regis-
tration to create paired training data. Our contribution is two-fold: 1) we
achieved reliable BMD and muscle mass estimation in THA cases with
minimal training data, and 2) we experimentally demonstrated that only
40 paired EOS–CT images were sufficient to reach high accuracy, sup-
porting feasibility in resource-limited settings. Future work will extend
this approach to broader patient populations and anatomical sites while
performing external validation to assess potential domain shifts across
different facilities.
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1 Introduction

Bones and muscles are essential to human mobility, and conditions such as os-
teoporosis and sarcopenia threaten quality of life among older adults [3, 10]. Os-
teoporosis, marked by low bone mass, raises fracture risk and healthcare costs,
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while sarcopenia worsens frailty. Early detection is vital for timely interventions.
As shown in Figure 1, the EOS imaging system employs a moving X-ray source
that travels vertically behind the patient, enabling biplanar, full-body imaging at
low radiation doses [2]. This differs from conventional X-ray imaging, which typi-
cally uses a fixed source emitting radiation radially. By simultaneously capturing
frontal and lateral views, EOS facilitates three-dimensional (3D) reconstructions
of anatomical structures and more comprehensive analyses of spinal and lower-
limb alignment.
Recent research has highlighted the utility of conventional X-ray images in
opportunistic screening for osteoporosis, fueled by advances in deep learning.
Plain radiographs are widely accessible, cost-effective, and entail lower radia-
tion compared with computed tomography, making them suitable for large-scale
bone mineral density (BMD) assessments. Convolutional neural networks, for in-
stance, can automatically extract cortical and trabecular bone features from sim-
ple X-rays, showing promising accuracy in predicting BMD [7, 8, 1]. Among them,
one promising approach with potentially high generalizability to new modality
utilized 2D–3D registration with CT of the same patient in training data prepa-
ration [4]. These studies suggest that plain radiographs may offer a practical
alternative to dual-energy X-ray absorptiometry (DXA), currently the clinical
gold standard for osteoporosis diagnosis.
In this work, we propose a novel pipeline that focuses on robust BMD and muscle
mass estimation in total hip arthroplasty (THA) cases using minimal training
data. Our contribution is two-fold: (1) we achieved reliable BMD and muscle
mass predictions with only a small dataset by fine-tuning the pre-trained model
using the method proposed in [4], and (2) we experimentally demonstrated that
merely 40 paired EOS–CT images suffice to obtain high accuracy. This find-
ing underscores the feasibility of our approach in resource-limited environments,
where acquiring large imaging datasets is often challenging. By leveraging the
low-dose capability of EOS imaging and integrating advanced machine learning
techniques, our method holds promise for more frequent and safer patient moni-
toring, ultimately supporting earlier diagnoses and improved outcomes for THA
patients at risk of osteoporosis or sarcopenia.

2 Methods

2.1 Dataset

In this study, we collected datasets from two institutions (Table 1). The first
dataset was gathered from 600 patients (484 females, 116 males) who underwent
total hip arthroplasty (THA) at Institution 1. For each patient, we collected
multiple X-ray images of the hip (in abduction, adduction, standing, supine,
and resting positions) as well as lower-limb CT scans. The patient’s height was
157.5 ± 8.3cm, weight 58.7 ± 12.2kg, and BMI 23.6 ± 4.0kg/m2. This dataset
provides a broad spectrum of pre- and postoperative images, offering valuable
anatomical diversity for training and evaluating algorithms aimed at BMD and
muscle mass estimation.
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Fig. 1. Differences between the EOS imaging system and conventional X-ray imaging.
Conventional X-ray imaging emits radiation radially from a fixed X-ray source, whereas
the EOS imaging system uses a moving source to emit radiation horizontally, enabling
full-body imaging.

The second dataset originated from Institution 2, comprising 77 patients (70 fe-
males, 7 males) who were scheduled to receive THA and had no other implants
in either hip prior to surgery. In each case, we collected full-body EOS images in
the standing position and complementary lower-limb CT scans. This group had
a height of 153.8± 8.0cm, weight of 59.2± 9.9kg, and BMI of 25.0± 3.7kg/m2.
Because EOS imaging delivers low-dose, biplanar radiographs, it permits fre-
quent postoperative monitoring with minimal radiation exposure.
Using the two datasets, we followed the DRR generation steps described in prior
work [4] to create standardized projections of the proximal femur. These syn-
thetic radiographs were then used to develop and validate our proposed frame-
work for BMD and muscle mass evaluation under varying clinical conditions.

Table 1. Details of the dataset used in this study

Acquired institution Institution 1 Institution 2
Purpose pre-training fine-tuning and testing
Modality CT X-ray CT EOS

Data dimension 3D 2D 3D 2D
# of patients 600 600 77 77
# of images 600 2461a 77 77
Field of view Lower extremity Hip Pevis to knee Whole body

a 4-5 X-ray images per patient
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Fig. 2. Overview of Bone Density and Muscle Volume Estimation:(a) Ground Truth
from CT Images:Bone density (aBMD, vBMD) and muscle volume are obtained from
CT images using segmentation, 2D-3D registration, and DRR generation. Muscle vol-
ume is calculated from segmented regions, and bone density is averaged from the prox-
imal femur.(b) Estimation from EOS Images:Trimmed anterior EOS images are input
into deep learning models—BMD-GAN for bone density and MSKdeX for muscle vol-
ume. Predicted DRRs are processed to estimate bone density and muscle volume.

2.2 QCT Calibration Protocol

Accurate BMD reference values were obtained from quantitative CT (QCT)
scans by following two different calibration strategies for each institution, which
depend on whether an external calibration phantom was present.

(i) Phantom-based calibration for the pre-training cohort. All 600 CT vol-
umes collected at Institution 1 were acquired with the B-MAS200 phantom (Ky-
oto Kagaku Inc., Kyoto, Japan) placed beneath the patient’s hip. Voxel inten-
sities were converted to the hydroxyapatite equivalent density using a linear
calibration derived from the intensity of the phantom inserts. The calibration
pipeline was validated in a prior study, yielding r = 0.95 and SEE = 0.050
g/cm−2 for aBMD over the proximal femur [11].

(ii) Phantom-less calibration for the EOS fine-tuning cohort. The 77 CT
scans from Institution 2 were acquired without a calibration phantom but with
the same scanner model, tube potential (120 kVp), and reconstruction kernel
as the phantom scans. We therefore adopted a fixed scanner-specific calibration
curve obtained by averaging the per-scan slopes and intercepts measured in
our prior study. This “phantom-less” approach has been shown, under protocol-
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matched conditions, to retain high agreement with DXA (r > 0.94 for aBMD of
the femoral neck in 86 subjects [11]).

2.3 Proposed Framework and Pre-training

In this study, we constructed a framework for bone density and muscle mass es-
timation by adapting methods from previous research [4, 5], originally developed
for X-ray images, to EOS data. As illustrated in Figure 2(a), we first utilized
a trained U-net model [6] to obtain musculoskeletal segmentation labels and
femoral landmark points from CT images, which serve as ground-truth refer-
ences for bone mineral density and muscle mass calculations. Next, we perform
2D–3D registration [9] to align the CT and EOS images, enabling the creation
of digitally reconstructed radiographs (DRRs) aligned with EOS images. During
DRR generation, we utilize CT scans from the pelvis to the knee and extract the
proximal femoral region based on landmark detection—replicating the imaging
range typically used in DXA examinations.
For bone density estimation, we treat each patient’s left and right hip regions as
separate data samples, effectively splitting the dataset into two images per pa-
tient. In contrast, muscle mass estimation leverages the patient’s entire dataset
as a single input as shown in Figure 2(b). By training and predicting with the two
models (predicting BMD and muscle mass) on these EOS images, we establish
a system capable of estimating both BMD and muscle mass.

2.4 Experimental Setup and Evaluation Metrics

We employed a 5-fold cross-validation strategy to assess the performance of our
proposed framework. In each fold, the training set comprised 61 or 62 patients,
while the test set included the remaining 15 or 16 patients. For BMD estimation,
we split each patient’s data into two images (left and right hip), effectively dou-
bling the number of training samples; by contrast, for muscle mass estimation,
we used the entire image of each patient as a single input. We used only frontal
images from EOS in this experiment. We compared four experimental setups us-
ing the same training settings (e.g., loss function and optimizer) for pre-training
and fine-tuning:

– Train: A model trained from scratch on EOS data.
– Pre-trained: A model initially trained on conventional X-ray images with-

out further fine-tuning.
– Linear calibration: The same X-ray-based model whose predictions are

corrected using a simple linear regression approach.
– Fine-tuning: The X-ray-based model, further refined using EOS images.

We evaluated each method against CT-derived ground truths using three
metrics—Pearson Correlation Coefficient (PCC), Intraclass Correlation Coeffi-
cient (ICC), and Mean Absolute Error (MAE)—to gauge accuracy in BMD and
muscle mass predictions.
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3 Results

3.1 Bone Mineral Density Estimation

Table 2 shows the results of the experiment. The experiments revealed that fine-
tuning a model originally trained on conventional X-ray images to EOS data
yields the highest accuracy for bone mineral density (BMD) estimation. Overall,
the model trained from scratch on EOS images (Train) achieved the lowest per-
formance, likely due to the small training set—approximately 120 images—which
limited its capacity to learn robust representations. In contrast, the model pre-
trained solely on X-ray images (Pre-trained) produced a Pearson correlation
coefficient (PCC) of 0.874, indicating a moderate linear relationship. However,
its intraclass correlation coefficient (ICC) was notably poor (-0.604), suggesting
low consistency in individual-level predictions. This discrepancy may stem from
brightness mismatches between the original X-ray data and EOS images.
When the Pre-trained model was refined further with EOS images (Fine-tuning),
both the PCC (0.916) and ICC (0.894) increased substantially. These findings un-
derscore the importance of domain-specific adaptation, as the fine-tuned model
consistently outperformed the other approaches across all evaluation metrics.

Table 2. BMD and Muscle Mass Estimation Results (best and second best results
were marked by bold and underline, respectively)

Model type BMD
estimation

Muscle mass estimation
Glu. max Glu. med. Glu. min. Iliacus Obt. ext.

PCC
Train 0.791 0.705 0.753 0.63 0.792 0.701

Pre-trained 0.874 0.821 0.839 0.692 0.823 0.766
Linear calibration 0.869 0.798 0.832 0.670 0.805 0.740

Fine-tuning 0.916 0.795 0.840 0.746 0.843 0.798
ICC

Train 0.710 0.483 0.655 0.596 0.721 0.647
Pre-trained -0.604 0.344 0.568 0.579 -0.218 0.698

Linear calibration 0.861 0.784 0.821 0.629 0.795 0.719
Fine-tuning 0.894 0.631 0.772 0.729 0.763 0.762

3.2 Muscle Mass Estimation

In muscle mass estimation, the model trained from scratch on EOS data (Train)
again showed the lowest accuracy, likely due to the relatively small training set.
Table 2 compares prediction performance across different muscles, indicating
that both the Pre-trained and Fine-tuning models surpass the Train model in
overall consistency. Notably, Fine-tuning outperforms Pre-trained by exhibiting
higher ICC for the majority of targeted muscles. This suggests that tailoring a
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model initially trained on conventional X-ray images to EOS data substantially
enhances predictive reliability.
Among the examined muscles, the iliopsoas muscle demonstrated the largest
gains with Fine-tuning. The improvements in accuracy highlight the value of
domain-specific adaptation when transitioning from plain X-ray images to EOS-
based datasets. By leveraging the strengths of an existing pre-trained model and
refining its parameters on new, low-dose image data, Fine-tuning emerges as the
most viable option for robust muscle mass estimation. These findings reinforce
the conclusion that, while starting from scratch in a small-scale dataset can be
suboptimal, a well-curated transfer learning approach yields more accurate and
consistent clinical measurements.

3.3 Comparison between pre- and post-operative images

Figure 3 illustrates the comparison between pre- and postoperative measure-
ments in terms of bone mineral density (BMD). In Figure 3(a), the horizontal
axis represents the preoperative BMD values calculated from CT scans, while
the vertical axis corresponds to their postoperative counterparts. A Pearson cor-
relation coefficient of 0.995 indicates an extremely high agreement, suggesting
that our ground truth values are reliable.
To further assess reproducibility, we calculated the coefficient of variation (CV)
for each patient, under the assumption that BMD remains unchanged during the
short interval between the pre- and postoperative exams. As shown in Figure
3(b), the root mean square CV (RMS-CV) for the CT-based ground truth was
1.01%, confirming the reliability of the ground truth. The Pre-trained model’s
reproducibility was bad (about 10.01%), while it improves quite a lot by Fine-
tuning (2.67%).
Figure 3(c) compares absolute errors between the predicted and ground-truth
BMD values in both the preoperative and postoperative scenarios, displayed as
boxplots. These results indicate that the magnitude of prediction error is similar
in both cases, suggesting that our method’s performance remains consistent re-
gardless of surgical intervention. Taken together, these findings demonstrate that
the proposed framework maintains high accuracy and reliability in monitoring
BMD before and after THA.

3.4 Effect of Training Data Size

We further investigated how varying the quantity of training data for fine-tuning
affects BMD inference accuracy. As illustrated in Figure 4, we began with data
from 10 patients—equivalent to 20 total images—randomly selected for fine-
tuning. We then successively added data from 10 more patients in each iteration,
observing how incremental increases influenced predictive performance. The re-
sults indicate that once 40 images (i.e., data from 20 patients) are included,
inference accuracy stabilizes. Beyond roughly 80 images, both the intraclass cor-
relation coefficient (ICC) and mean absolute error (MAE) remain at a high,
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Fig. 3. BMD estimated from pre- and post-operative CT and EOS images. (a) scatter
plot of aBMD, showing high correlation (PCC = 0.995, ICC = 0.995) between mea-
surements from preoperative (x-axis) and postoperative (y-axis) CT images, confirming
accurate measurement. (b) covariance of variation between pre- and post-operative CT
and EOS, (c) mean absolute error (MAE) between ground truth (CT) and predicted
(EOS) aBMD for pre- and post-operative stages. Box plots show consistent prediction
accuracy for Train and Fine-tuning, indicating reliable performance, while Pre-trained
showed a much larger error.

consistent level, suggesting diminishing returns from adding additional training
samples.

4 Discussion

This study demonstrated that the proposed pipeline can reliably estimate BMD
and muscle mass using limited amounts of EOS imaging data, especially through
the application of transfer learning. Fine-tuning models pre-trained on conven-
tional X-ray images consistently outperformed those trained from scratch, un-
derscoring the value of leveraging existing knowledge to compensate for the small
size of EOS datasets. Notably, our experiments showed that fewer than 40 paired
EOS–CT images can suffice to achieve stable performance and that increasing
the training data beyond 80 images yields diminishing returns. Additionally, we
observed minimal differences in estimation accuracy between pre- and postop-
erative scenarios, suggesting that the method remains robust across short-term
changes in patient anatomy.
Importantly, our approach is not intended to supplant DXA in population-level
osteoporosis screening; rather, it capitalises on the use of data that are already
collected during routine orthopaedic care. High-volume arthroplasty centres ac-
quire standing EOS scans for alignment analysis, implant templating, and post-
operative monitoring; mining these low-dose images for BMD and muscle metrics
therefore adds zero radiation, no extra scan time, and no incremental cost. This
opportunistic workflow is particularly valuable for frail or mobility-limited pa-
tients who struggle with the repositioning required for DXA or conventional
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Fig. 4. Impact of training data size on prediction accuracy, showing the effect of vary-
ing the amount of training data on prediction accuracy during fine-tuning. Data was
incrementally added by selecting 10 patients (20 images) at a time. Additionally, results
averaged from training with one patient at a time (10 iterations) and five patients at a
time (2 iterations) are included. The results indicate that prediction accuracy stabilizes
with 40 images, and similar ICC and MAE values are achieved with 80 images or more.

CT, and it enables longitudinal musculoskeletal assessment without additional
imaging burden. By turning a pre-existing image into a multifaceted biomarker
source, the proposed method complements DXA rather than competes with it,
extending bone-health surveillance into clinical encounters where it was previ-
ously absent.
While our results are promising, several limitations merit attention. First, the
dataset primarily consisted of patients from one or two institutions, potentially
restricting the generalizability of our model to other clinical settings or demo-
graphics. Second, BMD and muscle mass calculations relied on CT scans as the
reference standard, which may not be universally available or practical for all
patients. Third, the small overall sample size, despite our cross-validation ap-
proach, could introduce biases in model training and evaluation. Finally, varia-
tions in patient positioning, EOS image quality, and acquisition protocols present
additional challenges when generalizing the results across diverse healthcare en-
vironments.
Moving forward, expanding the dataset to include multi-institutional and multi-
ethnic populations would strengthen the robustness and applicability of the pro-
posed framework. Incorporating advanced data augmentation techniques, do-
main adaptation strategies, or synthetic image generation might further en-
hance model performance, especially in low-resource settings. Exploring time-
series analyses—tracking BMD and muscle mass changes longitudinally—could
offer a more dynamic and clinically relevant perspective on patient outcomes.
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