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Abstract. Volumetric optical imaging is an essential tool for under-
standing various biological processes. However, due to the inherent lim-
itations, such as long imaging time, volume scanning techniques reduce
volumetric information into sparse 2D slices. Although many deep learn-
ing methods attempt to reconstruct 3D volumes from sparse slices, they
struggle with out-of-distribution (OOD) data, which arises from the di-
versity of biological structures and the limited structural information in
sparse slices. To overcome these challenges, we propose Sparse3Diff, a
novel diffusion-based framework that reconstructs high-fidelity 3D vol-
umes from sparse 2D slices. Sparse3Diff incorporates a sparse slice-guided
position-aware diffusion process that utilizes sparse slices as guidance
and conditions on z-position to maintain structural coherence along the
z-axis. Additionally, to achieve stable reconstruction under sparse OOD
data, we propose a self-alignment strategy that enables the model to
be gradually fine-tuned by leveraging its own inferred slices as self-
guidance. Experimental results demonstrate that even with sparse OOD
data, the Sparse3Diff achieves accurate 3D reconstruction and remains
robust across various scanning datasets.
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1 Introduction

Volumetric optical imaging has significantly advanced our understanding of dy-
namic biological processes, such as blood flow dynamics [6] and large-scale neu-
ronal activities [17]. However, acquiring full volumetric data is challenging due
to limitations in imaging techniques such as long imaging times [1, 12, 18, 25, 26],
low temporal resolution [2, 3], and the risk of cellular damage [10, 15]. To miti-
gate these challenges, volume scanning methods often reduce the full volumetric
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information into sparse 2D slices [5, 11, 14, 22]. Thus, these scanning techniques
produce inaccurate 3D structures due to missing intermediate slices between
sparse slices, underscoring the need for accurate 3D reconstruction from sparse
slices.

Various deep learning (DL)-based methods [10, 11] have been proposed to
reconstruct 3D volumes from sparse slices. Recurrent-MZ [10] trains a model
using full volumetric data. However, it lacks a strategy for adapting to out-of-
distribution (OOD) datasets, arising from the wide variation in biological struc-
tures and the limited availability of full volumetric data. MicroDiffusion [11]
takes a different approach by training only on sparse slices through a two-stage
process. It first generates a coarse 3D volume using implicit neural represen-
tations (INR) [20] and then refines it with a diffusion model [7]. However, the
limited structural information in sparse slices results in inaccuracies in the initial
coarse reconstruction, which can be amplified during refinement. Moreover, sim-
ilar to Recurrent-MZ, MicroDiffusion lacks a mechanism for aligning with OOD
data, which limits its practical applicability. Therefore, an effective method is
needed to reconstruct 3D volumes from sparse slices with limited structural in-
formation while remaining robust against OOD data.

In this paper, we introduce Sparse3Diff, a novel diffusion-based framework
for reconstructing 3D volumes from sparse 2D slices by generating intermediate
slices between sparse slices. To address the limited information in sparse slices,
it is essential to develop a robust pre-trained model, which can be achieved
through our sparse slice-guided position-aware diffusion process. In this diffu-
sion process, the sparse slices remain constant, preserving their pixel values at
each diffusion time step, thereby enhancing structural consistency along the z-
axis. Additionally, by leveraging classifier-free guidance (CFG) [8], we integrate
z-position information into the model to ensure that the generated slices accu-
rately correspond to their respective z-positions. To align the pre-trained model
to sparse OOD data, we introduce a self-alignment strategy that fine-tunes the
pre-trained model to effectively leverage sparse slices. The self-alignment strat-
egy consists of two stages: (1) the pre-trained model infers intermediate slices
between the sparse slices, and (2) the model is fine-tuned by performing the
sparse slice-guided position-aware diffusion process using the previously inferred
slices as self-guidance. In this stage, the loss is computed only on the original
sparse slices. This strategy effectively aligns the pre-trained model to perform ro-
bustly on sparse OOD data. Evaluations on two scanning datasets demonstrate
that our proposed Sparse3Diff surpasses existing methods, exhibiting robustness
across diverse scanning datasets. In summary, our contributions are:

1. We propose a sparse slice-guided position-aware diffusion process that iter-
atively provides guidance by preserving pixel values of sparse slices while
utilizing CFG to condition the z-position, enhancing structural coherence
along the z-axis.

2. We introduce a self-alignment strategy that fine-tunes the pre-trained model
on sparse OOD data by using inferred slices as self-guidance through our
proposed diffusion process, enhancing its robustness in sparse OOD data.
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3. Our proposed Sparse3Diff outperforms existing methods, demonstrating ro-
bust and accurate performance across various scanning datasets.

Fig. 1. Overview of Sparse3Diff framework. A) Pre-training the diffusion model with a
sparse slice-guided position-aware diffusion process on the base dataset and B) aligning
the pre-trained model with a self-alignment strategy on the sparse OOD dataset.

2 Method

2.1 Problem formulation

The 3D volume B consists of a sequence of consecutive subvolumes B. Each
subvolume Bk consists of two consecutive sparse slices, sk and sk+1, along with
the intermediate slices Xk between them, expressed as Bk = [sk, Xk, sk+1]. The
sparse slices are sampled from B at fixed intervals of n, forming the set S. The
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intermediate slices are denoted as Xk = {xk,1, xk,2, . . . , xk,n−1}, consisting of
n − 1 slices. Our goal is to reconstruct the complete 3D volume B from the
sparse slices S. To achieve this, a model f estimates the missing intermediate
slices X̂ within each subvolume. By integrating all reconstructed subvolumes,
the fully sampled 3D volume is obtained.

2.2 Sparse slice-guided position-aware diffusion process

To address the limited information in sparse slices, we introduce a sparse slice-
guided position-aware diffusion process to develop a robust pre-trained diffusion
model. Unlike conventional diffusion models [7, 21], which generate a single im-
age from noise, our approach directly learns the underlying distribution of in-
termediate slices together with their corresponding z-positions and sparse slices.
Specifically, the sparse slices are preserved at their original pixel values at each
diffusion time step, providing iterative guidance, with the forward and reverse
processes applied only to the intermediate slices [19]. The forward and reverse
processes are defined as follows:

q(Xt|Xt−1) := N
(
Xt;

√
1− βtXt−1, βtI

)
, (1)

pθ(Xt|Xt−1) = N (Xt−1;µt, βtI), (2)

where β indicates the noise schedule, and t ∈ [0, T ] denotes the diffusion time
steps. An important aspect of our approach is that the sparse slices used as
guidance remain unchanged throughout the diffusion process, serving as a stable
anchor for generating the intermediate slices.

To improve the model’s capability for generating slices that accurately corre-
spond to their positions along the z-axis, we incorporate the z-position of Bk as a
conditioning factor ck using a CFG method. This approach enables high-quality
conditional generation by jointly training a conditional and an unconditional
diffusion model. Specifically, the z-positions of slices Zk ∈ Rn+1 in Bk are en-
coded using sinusoidal positional encoding [23]. The resulting embeddings are
concatenated to form ck, with each embedding defined as follows:

ckj,2i = sin

(
zkj

10000
2i
dc

)
, ckj,2i+1 = cos

(
zkj

10000
2i
dc

)
, (3)

for j ∈ {1, 2, . . . , n+1} and i ∈ {1, 2, . . . , dc

2 }, where zj represents the z-position
of the j-th slice in Bk, and dc as the embedding dimension.

During training, with a fixed probability, the condition factor c is randomly
discarded from (B, c) to train the unconditional model, while the conditional
model incorporates c using cross-attention. Instead of the conventional noise
level ϵ-prediction approach, we employ V-loss [13] to train both models, allowing
the model to preserve structural details more effectively. The model is updated
by minimizing V-loss which measures the difference between the predicted value
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V̂θ(Xt, c) and the target V (Xt). Here, V (Xt) represents a combination of noise
ϵ and the original intermediate slices X0, formulated as follows:

L = λt∥V (Xt)− V̂θ(Xt, c)∥, V (Xt) =
√
αt ϵ−

√
1− ᾱt X0. (4)

where λ indicates the weight of noise. With the pre-trained model, 3D recon-
struction is achieved by generating intermediate slices during inference following
the sampling process of CFG. The predicted noise for each conditional and un-
conditional model is linearly combined, as shown in

ϵ̃θ(Xt) = (1 + w)ϵθ(Xt, c)− wϵθ(Xt). (5)

By leveraging this process, the model enforces z-axis consistency, ensuring co-
herent alignment of the inferred slices, which improves the quality of the 3D
reconstruction.

2.3 Self-alignment strategy for sparse OOD data

The significant diversity of biological structures between 3D volumetric imaging
datasets presents a major challenge in addressing sparse OOD data. We con-
duct experiments in a setting where only sparse slices are available, with no
intermediate slices included in the dataset. To effectively handle such cases, we
introduce a self-alignment strategy specifically tailored for sparse OOD data as
shown in Fig. 1(B). The proposed self-alignment strategy consists of two steps:
(1) inferring intermediate slices, and (2) aligning the pre-trained diffusion model
to sparse OOD data.

Step 1: Inferring intermediate slices. In each iteration of Step 1, a sparse
slice sk is given as a reference point where k ∈ {2, 3, . . . ,M−1}. We identify two
adjacent sparse slices, one before sk−1, and one after sk+1 the reference sparse
slice. The pre-trained diffusion model f is employed to infer the intermediate
slices X̂k−1 and X̂k between the sparse slice and its adjacent slices.

Step 2: Aligning the pre-trained diffusion model to sparse OOD
data. Next, the inferred intermediate slices X̂k−1 and X̂k are used as self-
guidance to fine-tune the pre-trained diffusion model f with our sparse slice-
guided position-aware diffusion process. To achieve this, for each sk, we construct
a pseudo-dataset containing n − 1 pseudo-data B̂k,l ∈ Rn+1×H×W with l ∈
{1, 2, . . . , n − 1}. Each pseudo-data comprises consecutive inferred slices along
with the sparse slice sk. This approach establishes a position-dependent spatial
context by ensuring that each pseudo-data presents a sparse slice sk at a different
position. By learning the spatial characteristics and distribution of sk in this
position-dependent manner, the model achieves improved alignment, even with
sparse OOD data. The self-guided fine-tuning process involves computing a V-
loss only between the sparse slice skt and its corresponding slice produced by
the diffusion process for each time step. For each sk, the model is updated
n − 1 times with the use of pseudo-dataset. After completing these steps, a
new reference point is selected, and the updated model generates a new pseudo-
dataset to further fine-tune the model f . Once the fine-tuning process with
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Table 1. Results of the 3D reconstruction on the base dataset. CFG indicates classifier-
free guidance. Bold denotes the best results, while underline denotes the second-highest
results.

SSIM ↑ PSNR ↑
Method DNA Membrane Golgi DNA Membrane Golgi
Recurrent-MZ 0.448 0.330 0.470 22.75 23.36 19.41
Hash 0.671 0.725 0.617 26.07 27.78 21.70
INR 0.695 0.803 0.669 27.43 30.49 23.66
MicroDiffusion 0.672 0.769 0.712 26.48 27.29 24.88
DDPM 0.683 0.901 0.700 23.91 28.89 23.47
Ours 0.745 0.933 0.819 26.49 31.89 28.30
Ours+CFG 0.745 0.938 0.827 26.55 32.70 29.21

Table 2. Results of the 3D reconstruction on the sparse OOD dataset. CFG indicates
classifier-free guidance and SA denotes the self-alignment strategy. Bold denotes the
best results, while underline denotes the second-highest results.

SSIM ↑ PSNR ↑
Method Dendrite Vasculature Neuron Dendrite Vasculature Neuron
Recurrent-MZ 0.264 0.143 0.237 22.52 16.43 22.90
Hash 0.481 0.292 0.350 25.05 17.09 23.86
INR 0.571 0.336 0.367 25.53 17.70 23.40
MicroDiffusion 0.529 0.359 0.366 25.56 17.70 24.11
DDPM 0.476 0.403 0.292 25.89 19.36 22.84
Ours 0.591 0.410 0.307 27.30 19.90 22.75
Ours+CFG 0.593 0.410 0.310 27.24 19.96 23.17
Ours+CFG+SA 0.627 0.424 0.335 27.43 20.13 23.59

the self-alignment strategy is completed, a final inference step is performed to
generate the full 3D volume. This alignment process maximizes the use of sparse
slices, enabling the model to generate high-fidelity volumetric reconstruction
with sparse OOD data, and enhancing its applicability to real-world scenarios.

3 Experiments

3.1 Experimental setup

Datasets. In this study, we conducted experiments on two datasets: the Allen
Cell dataset [24] and the MicroDiffusion dataset [11]. The Allen Cell dataset, used
as the base dataset for pre-training the diffusion model, comprises 3D data of
DNA, membranes, and the Golgi apparatus. The MicroDiffusion dataset contains
3D data of dendrites, vasculature, and neurons and serves as sparse OOD data.
Both datasets were obtained using the widely adopted laser scanning method.
Implementation details. To evaluate the robustness of Sparse3Diff across var-
ious scanning datasets, we simulated the use of a non-diffracting beam scanning
following the procedure described in MicroDiffusion [4] and generated a synthetic
non-diffracted beam dataset from the laser-scanned dataset. Unless otherwise
specified, all experiments were conducted on the laser scanning dataset. In all
experiments, we used an interval of n = 6.
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Fig. 2. Visualization results on the base dataset (a) 2D visualizations and (b) 3D
visualizations of the membrane.

Fig. 3. Visualization results on the sparse OOD dataset (a) 2D visualizations and (b)
3D visualizations of the vasculature.

Competing methods and metrics. To evaluate the 3D reconstruction per-
formance of Sparse3Diff, we compared it against several methods: the RNN-
based Recurrent-MZ [10], INR [20], MicroDiffusion [11], Hash encoding [16], and
DDPM [7]. For the evaluation metrics, we used structural similarity index map
(SSIM) and peak signal-to-noise ratio (PSNR) [9].

3.2 Experimental results

Performance evaluation on base dataset. We compared the 3D reconstruc-
tion performance of Sparse3Diff against competing methods on three objects,
as shown in Table 1. Under the sparse setting, the competing methods strug-
gle to achieve structurally consistent reconstruction. Notably, this result sug-
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Fig. 4. Performance comparison between our proposed method and competing methods
on a non-diffracting beam dataset.

gests that applying the diffusion model to the INR result may contribute to
MicroDiffusion’s performance drop, possibly amplifying INR’s errors. In con-
trast, Sparse3Diff effectively reconstructs the 3D volume by leveraging a sparse
slice-guided position-aware diffusion process. Its performance improves further,
surpassing other comparison models with an average increase of 13.38% in SSIM
and 12.32% in PSNR. This superior performance is illustrated in Fig. 2, where
the reconstructed results of our method show higher similarity to the ground
truth (GT).
Performance evaluation on sparse OOD dataset. To evaluate the effec-
tiveness of our self-alignment strategy, we conducted experiments on the sparse
OOD dataset. As shown in Table 2, our method, which leverages the pre-trained
model, outperforms competing methods. The incorporation of the self-alignment
strategy further enhances overall performance, yielding improvements of up to
13.96% in SSIM and 10.53% in PSNR. These improvements are illustrated in
Fig. 3, demonstrating that the proposed self-alignment strategy effectively aligns
the model with sparse OOD data.
Performance evaluation on non-diffracting beam dataset. We conducted
an additional experiment to evaluate the performance of the proposed method
in a non-diffracting beam dataset. As illustrated in Fig. 4, our method out-
performs existing methods in the non-diffracting beam dataset. These findings
demonstrate that our model achieves greater robustness across various scanning
datasets compared to competing methods.

4 Conclusion

In this paper, we propose a novel diffusion-based framework, Sparse3Diff, for
high-fidelity 3D reconstruction from sparse 2D slices. To ensure structural con-
sistency along the z-axis, we incorporate a sparse slice-guided position-aware
diffusion process. Moreover, to align the pre-trained model to sparse OOD data,
we propose a self-alignment strategy. Experimental results on both the base and
sparse OOD datasets demonstrate that Sparse3Diff outperforms existing meth-
ods in both reconstruction accuracy and structural coherence while remaining



Title Suppressed Due to Excessive Length 9

practical in sparse OOD data. Furthermore, our additional study demonstrates
the robustness of our proposed method across various scanning datasets. These
findings highlight the potential of Sparse3Diff in revolutionizing 3D reconstruc-
tion technologies with high-quality results and robust adaptability across diverse
applications.
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