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Abstract. Dynamic MRI reconstruction, one of inverse problems, has
seen a surge by the use of deep learning techniques. Especially, the prac-
tical difficulty of obtaining ground truth data has led to the emergence
of unsupervised learning approaches. A recent promising method among
them is implicit neural representation (INR), which defines the data as
a continuous function that maps coordinate values to the correspond-
ing signal values. This allows for filling in missing information only with
incomplete measurements and solving the inverse problem effectively.
Nevertheless, previous works incorporating this method have faced draw-
backs such as long optimization time and the need for extensive hyper-
parameter tuning. To address these issues, we propose Dynamic-Aware
INR (DA-INR), an INR-based model for dynamic MRI reconstruction
that captures the spatial and temporal continuity of dynamic MRI data
in the image domain and explicitly incorporates the temporal redundancy
of the data into the model structure. As a result, DA-INR outperforms
other models in reconstruction quality even at extreme undersampling
ratios while significantly reducing optimization time and requiring min-
imal hyperparameter tuning. Our code is available at here.

Keywords: Dynamic MRI reconstruction, · Deep learning, · Unsuper-
vised learning, · Implicit Neural Representation.

1 Introduction

Dynamic Magnetic Resonance Imaging (MRI) captures sequential images of
moving organs, such as the heart, while Dynamic Contrast Enhanced (DCE)
MRI monitors temporal changes in in-vivo drug effects on vasculature. Due to the
slow acquisition speed of MRI, only partial data can be collected per frame, lead-
ing to a trade-off between spatial and temporal resolution. Recent approaches
have accelerated data acquisition while maintaining image quality by exploit-
ing sparsity in the spatial and temporal domains [4, 8, 13]. Early deep learning
methods [6,10,11,18] applied supervised learning, but required large amounts of
paired undersampled and fully sampled data, limiting their practicality.

To address this, unsupervised learning methods have emerged, leveraging in-
herent priors in Convolutional Neural Networks (CNNs) [19] and Implicit Neu-
ral Representations (INRs) [7, 9]. CNN-based approaches, such as [19], exploit
⋆ Corresponding author
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the structural prior of randomly initialized CNNs to capture low-level image
statistics, which serves as an implicit regularization across all frames. However,
the use of discrete grid representations in CNN constrains their ability to fully
capture the continuous nature of dynamic MRI data. In contrast, INR-based
methods [7, 9] represent dynamic MRI data as a continuous neural function in
both spatial and temporal dimensions. By optimizing this function using spatio-
temporal coordinates as inputs and predicting the corresponding values based
on the available measurements, INR models effectively infer missing information
during the reconstruction process, enabling full data recovery.

Specifically, Neural Implicit k -space (NIK) [7] introduced learning neural
representation in the frequency domain to avoid regridding loss, but aliasing ar-
tifacts remained evident in the reconstructed images. The Fourier feature MLP
(FMLP) [9] used a Fourier feature encoder [17] without requiring explicit regular-
ization terms and showed superior performance over previous methods. However,
a common drawback across all these approaches is the lengthy optimization pro-
cess, which can take several hours to an entire day for networks to converge. More
recent work [3] replaces the Fourier feature encoder with a hash encoder [15] to
achieve faster convergence. However, this approach remains time-intensive due
to complexity of tuning hyperparameters for the hash encoders and regulariza-
tion terms required for spatial and temporal consistency. Moreover, the results
are highly sensitive to the weighting of these regularization terms.

To address these challenges, we propose Dynamic-Aware INR (DA-INR),
which explicitly models the temporal redundancy inherent in dynamic MRI data,
inspired by D-NeRF [16]. It circumvents the need for manual weighting of reg-
ularization terms by making canonical space play as a regularization role to
the other frames during optimization. Thus, it enables more stable convergence
than a hash encoder alone. As a result, DA-INR not only simplifies the training
process, but also enhances adaptability to diverse undersampling conditions and
data complexities, offering an efficient solution for dynamic MRI reconstruction.

2 Method

2.1 Dynamic-aware INR

We propose Dynamic-aware INR (DA-INR), which accelerates the optimization
process in dynamic MRI reconstruction through a novel dynamic hash encoding
scheme. In this section, we provide an overview of (1) the overall workflow, (2)
the core components of the framework, and (3) the optimization strategy.

Overall workflow DA-INR consists of three learning stages (Fig.1). The frame-
work operates within the canonical space, which serves as a reference coordinate
system that captures the static structure of the dynamic MRI data. The input
coordinate (x, y, t) is encoded by frequency encoding [14] and passed into the
deformation network Ψt which outputs the deformation field (∆x,∆y) based on
the canonical space. The pretrained feature extractor extracts image features



Title Suppressed Due to Excessive Length 3

( : , ( : ), )

... (∆ : , ∆ : ) ⨁

Canonical space–based

deformation field

Radial trajectory

(NuFFT)
coilcoil

Undersampled

K-space data

Predicted

K-space data

L1 loss

Optimization

Sensitivity map

sampling

F.E

Predicted frame

Undersampled data

in image domain

H.E

1 2 ...

Feature

Extractor

concat

coil

sampling

Fig. 1: DA-INR model architecture. It maps coordinates to the corresponding
value with image features and displacement vector based on canonical space.

from the undersampled data in the image domain. Then, the canonical network
Ψx takes the deformed coordinate (x + ∆x, y + ∆y) and the image features as
input and predicts the corresponding value within the canonical space.

Deformation network The deformation network Ψt estimates the deformation
field between cells at a specific time t and cells in the canonical space. More
specifically, given the input coordinate x = (x, y) at time t, Ψt predicts the
deformation field ∆x to transform the cell position (x, y) to the cell position
(x+∆x, y+∆y) in the canonical space. Before going into Ψt, x and t is encoded
by the frequency encoding, γ(p) =

〈
(sin(2iπp), cos(2iπp))

〉I
0

[14]. It is applied to
each component of the input coordinate with I = 10 and the time component
with I = 6.

Feature extraction In medical imaging or inverse problems with limited data,
it is common to use models pre-trained on large-scale natural images for feature
extraction [2, 12]. We use the pretrained image feature extractor, MDSR [5], to
provide auxiliary features for dynamic MRI reconstruction1. The frozen feature
extractor takes the undersampled data in the image domain at time t (spatial
interpolation, reconstruction) or of two neighboring frames of time t (temporal
interpolation) as input and outputs the image features f ∈ Rc′×H×W whose size
is the same as the input frame. c′ is the size of the channel dimension. We upscale
f to f ′ ∈ Rc′×rH×rW by bilinear interpolation, and x +∆x to x′ ∈ R2×rH×rW

by nearest-neighborhood interpolation based on the scale ratio r. During opti-
mization, r is fixed as 1, r = 1. During inference of spatial interpolation, r is
bigger than 1, r > 1.

1 We compared various encoders, but omitted results due to space limits. Please refer
to our project page.
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Canonical network The canonical network Ψx predicts the corresponding im-
age intensity value in the canonical space, given the resampled deformed coordi-
nate x′ and the image features f ′. The input x′ is first encoded by a hash encoder
ϕ [15] and is concatenated with f ′ in the channel dimension. Then, they are fed
into Ψx to output the corresponding image intensity value in the cell position of
the canonical space.

Optimization We only use L1 loss as data-consistency for optimization. The
final loss L is defined as follows:

L =

C∑
c=1

||FuScdθ −mt
c||11, (1)

where dθ is the reconstructed image by DA-INR defined , mt
c is a cth coil golden-

angle radial undersampled k -space data at time t. Fu is NuFFT operator with
a given radial trajectory and multi-coil sensitivity map.

2.2 Difference between Feng et al. and DA-INR for encoding
temporal redundancy

Feng et al. [3] learns to map (x, y, t) directly to the corresponding value in the
image domain and its optimization is operated on under-sampled k-space data
at each frame individually. Hence, it leads to over-fitting to each under-sampled
frame when the explicit regularization terms are not used. DA-INR enforces tem-
poral consistency via a shared canonical space jointly optimized with Ψt across
the sequence. Though described separately, Ψt and Ψx act as a unified module:
Ψx models canonical signal across time, while Ψt learns to deform it per frame.
The canonical space is updated using spokes from all frames, aggregating struc-
tural details and forming a complete high-frequency representation. Ψt adjusts
this to each frame, accounting for dynamic deviations. This acts like multi-view
regularization that emerges from the framework itself rather than handcrafted
priors, removing manual hyperparameter tuning.

3 Experiments

3.1 Baseline methods

We compare our method against Non-uniform Fast Fourier Transform (NuFFT),
GRASP [4], TD-DIP [19], and the method proposed by Feng et al. [3]. Feng et
al. [3] is an INR-based method with hash encoding that incorporates explicit
temporal TV and low-rank regularization terms for optimization and set differ-
ent values on the weights of the regularization terms according to data types
and acceleration factors. However, using the official code of [3], we found the
results highly sensitive to regularization weights—small change (e.g., ±0.05) all
led to noisy or black images. Despite extensive tuning, stable reproduction was
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infeasible2. To ensure reproducibility and isolate the method’s inherent behav-
ior, we ran it without regularization. This adaptation is referred to as HashINR
in our paper.

3.2 Datasets

Retrospective cardiac cine data was obtained using a 3T whole-body MRI
scanner (Siemens Tim Trio) equipped with a 32-element cardiac coil array. The
full-sampled k -space data is used as ground truth (GT). To simulate a retro-
spective undersampling pattern, we adopt a 2D golden-angle radial acquisition
scheme, where the spokes repeatedly traverse the center of k -space, rotating with
a step of 111.25◦. It is applied to ground truth with multi-coil NuFFT to ob-
tain the undersampled radial trajectories of Fibonacci numbers [1]. Dynamic
Contrast-Enhanced (DCE) liver data scan was conducted on a healthy vol-
unteer using axial orientation and breath-holding techniques by a whole-body 3
Tesla MRI system (MAGNETOM Verio/Avanto, Siemens AG, Erlangen, Ger-
many), employing a combination of body-matrix and 12-element spine coil array.
For data acquisition, a radial stack-of-stars 3D Fast Low Angle Shot (FLASH)
pulse sequence with golden-angle ordering was utilized.

3.3 Performance evaluation

For cardiac cine data, we use Peak Signal-to-Noise Ratio (PSNR) and structural
similarity index (SSIM) as evaluation metrics, both calculated frame-by-frame.
For DCE liver data, we conduct a visual comparison and assess temporal fidelity
based on the signal intensity in the region of interest (ROI), as no ground truth
images are available. The ROIs for the aorta (AO) and portal vein (PV) are
manually drawn for each signal intensity flowmap. We use NuFFT as a reference
because the contrast changes can be preserved due to the average signal intensity
over a large ROI. We test the performance of each method with 21, 13, and 5
spokes per frame (AF = 6.1, 9.8, 25.6) on cardiac cine data, and with 34 spokes
per frame (AF = 11.3) on DCE liver data.

3.4 Implementation details

Ψt and Ψx are 5-layer MLPs (64 hidden units, ReLU); Ψt and Ψx predicts de-
formation vectors and complex-values each. The non-Cartesian Fourier under-
sampling operation is executed using the NuFFT package3, facilitating rapid
computation and gradient backpropagation on a GPU. Feng et al. [3] tunes the
hyperparameters L, T, F,Nmin, and b of its hash encoder according to each data
type and AF, while we use consistent values across all data types and AFs as
L = 16, T = 219, F = 2, Nmin = 16, and b = 2.
2 To reproduce these experiments under identical setups including the instability we

saw, please refer to our project page
3 https://github.com/dfm/python-nufft
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Fig. 2: Visual comparisons between results of AF = 9.8 in cardiac cine data re-
construction at diastole and systole. The upper row is the reconstruction output
in the (y − x) domain for each method and the below row is the absolute error
map between ground truth and the reconstructed output of each method. PSNR
values are specific to each frame.

4 Results

4.1 Retrospective cardiac cine data

Fig. 2 presents the visual comparisons between our method and the existing
methods for cardiac cine data reconstruction at AF = 9.8. We evaluate the
reconstructed frames for each method during the diastolic and systolic phases.
NuFFT struggles to accurately capture the cardiac structure. HashINR shows
noise in its results. While GRASP sometimes achieves high PSNR, it struggles
to reconstruct fine structural details, such as the shape of the papillary muscle,
under both undersampling ratios. In contrast, our method closely approximates
the ground truth, achieving high fidelity in both phases. The quantitative error—
computed as the sum of the squared differences between the reconstructed and
ground truth images—is the smallest among all methods.

Tab. 1 reports the quantitative results analyzed on cardiac cine data. The re-
construction quality of NuFFT and HashINR is highly dependent on the number
of spokes, resulting in substantial gaps in PSNR and SSIM values for AF = 25.6
and AF = 9.8, with differences ranging from 2.66 to 3.5 dB in PSNR and 0.1418
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Table 1: Quantitative results of cardiac cine data reconstruction. We compare
ours to NuFFT, GRASP, TD-DIP, and HashINR at AF = 25.6 and AF = 9.8.

Method Undersampling ratio PSNR (dB) SSIM

NuFFT AF = 25.6 21.58 ± 0.0 0.3809 ± 0.0
AF = 9.8 25.08 ± 0.0 0.5250 ± 0.0

GRASP AF = 25.6 27.95 ± 0.59 0.8410 ± 0.005
AF = 9.8 28.77 ± 0.48 0.8558 ± 0.003

TD-DIP AF = 25.6 28.73 ± 0.55 0.8608 ± 0.003
AF = 9.8 28.86 ± 0.46 0.8714 ± 0.002

HashINR AF = 25.6 24.01 ± 0.54 0.6226 ± 0.003
AF = 9.8 26.68 ± 0.44 0.7643 ± 0.001

Ours AF = 25.6 29.48 ± 0.51 0.8702 ± 0.002
AF = 9.8 30.09 ± 0.47 0.8805 ± 0.001

to 0.1441 in SSIM. In contrast, our results show relatively consistent reconstruc-
tion quality in both conditions by learning to reconstruct the canonical space in
every iteration. Reconstructed images at specific time points are then obtained
by warping the canonical space with the deformation field estimated based on
temporal differences, leading to stable convergence in any condition. Our results
achieve the best PSNR and SSIM values, 29.59 dB/0.8712 and 30.13 dB/0.8835
in AF = 25.6 and AF = 9.8, respectively.
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Fig. 3: Qualitative results of DCE liver data reconstruction with an undersam-
pling ratio of 34 spokes per frame (AF = 11.3). (a) We visualize reconstruction
at different contrast phases, and (b) compare signal intensity flow for aorta (AO)
and portal vein (PV) ROI.
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4.2 Dynamic Contrast-Enhanced (DCE) liver data

Fig. 3 presents the qualitative reconstruction results and the corresponding sig-
nal intensity flowmap for DCE liver data reconstruction performed with an un-
dersampling ratio of 34 spokes per frame (AF = 11.3). While GRASP appears
clean in the y− x domain, the temporal signal curves in Fig. 3 (b) (orange line)
show it fails to capture dynamic contrast changes, overfitting to a few frames.
This highlights its limitation in modeling temporal variation, which is essential
in dynamic MRI. On the other hand, HashINR exhibits good temporal fidelity
in the flowmap, but its outputs display noticeable noise in the (y − x) domain,
overfitting to the undersampled frames. TD-DIP produces the reconstructions
characterized by overly smooth appearances. This smoothness results in a failure
to accurately delineate fine structural and contrast changes (Fig. 3 (a)). Conse-
quently, it achieves the lowest temporal fidelity among the compared approaches,
as reflected in the signal intensity flowmap in Fig. 3 (b). In contrast, our pro-
posed method achieves a prominent performance, delivering both high temporal
fidelity and phase-specific contrast changes. The reconstructions in Fig. 3 (a) are
well-defined, showing clear structural details and accurate phase enhancements.
Furthermore, our signal intensity flowmap in Fig. 3 (b) shows a strong capacity
of our model to preserve temporal dynamics, capturing the changes in signal
intensity over time with high accuracy.

4.3 Time consumption and GPU memory usage

Table 2 presents the comparison of runtime and GPU memory usage of every
method for dynamic MRI reconstruction at AF = 9.8 with GeForce RTX 4090.
GRASP requires 2.7 GB of GPU memory for cardiac cine data and 11.6 GB for
DCE liver data because its cost on GPU memory depends on the image sequence
size. TD-DIP utilizes the least GPU memory, but has the longest reconstruction
time for cardiac cine data. HashINR takes 6.97 to 7.25 times longer runtime than
ours, along with significantly higher memory consumption for both datasets. In
contrast, our method achieves the shortest optimization time among learning-
based methods for both data reconstruction with comparatively low GPU mem-
ory usage.

5 Conclusion

In this paper, we propose a novel framework for spatio-temporal representation
learning tailored to dynamic MRI reconstruction without requiring ground truth
data. Our method, Dynamic-aware INR (DA-INR), combines the efficiency of
hash encoding for rapid optimization with an explicit design inspired by D-
NeRF to effectively capture continuous temporal redundancy. By leveraging a
canonical network, DA-INR incorporates temporal consistency into its structure,
reducing dependency on explicit regularization terms while ensuring fast conver-
gence. Comprehensive experiments demonstrate that DA-INR achieves superior
reconstruction quality and efficiency, making it a robust solution for dynamic
MRI reconstruction even under extreme undersampling conditions.
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Table 2: Runtime and GPU memory usage of different methods on each data, in
the unit of seconds and gigabyte. It is examined on GeForce RTX 4090.

Data type cardiac cine data
128× 128, 23 frames, 32 coils

DCE liver data
384× 384, 17 frames, 12 coils

Method Runtime (sec) GPU memory (GB) Runtime (sec) GPU memory (GB)
NuFFT 13.36 0.7 18.96 0.7
GRASP 146.40 2.7 423.24 11.6
TD-DIP 14164.31 1.6 38581 2.4
HashINR 10484.32 10.1 58088 7.6

Ours 1445.50 3.5 8329.55 5.4

Acknowledgments. This work was supported by the National Research Foundation
of Korea (NRF) grant funded by the Korea government (MSIT)(No.2022R1C1C100849612),
Institute of Information & communications Technology Planning & Evaluation (IITP)
grant funded by the Korea government (MSIT) (No.RS-2020-II201336, Artificial In-
telligence Graduate School Program (UNIST), No.2022-0-00959, No.RS-2022-II220959
(Part 2) Few-Shot Learning of Causal Inference in Vision and Language for Decision
Making, No.RS-2022-II220264, Comprehensive Video Understanding and Generation
with Knowledge-based Deep Logic Neural Network). This work was also supported by
the 2025 Research Fund (1.250006.01) of UNIST(Ulsan National Institute of Science
& Technology).

Disclosure of Interests. The authors have no competing interests to declare that
are relevant to the content of this article.

References

1. Chandarana, H., Feng, L., Block, T., Rosenkrantz, A., Lim, R., Babb, J., Sodickson,
D., Otazo, R.: Free-breathing contrast-enhanced multiphase mri of the liver using
a combination of compressed sensing, parallel imaging, and golden-angle radial
sampling. Investigative radiology 48 (11 2012). https://doi.org/10.1097/RLI.
0b013e318271869c

2. Fang, W., Tang, Y., Guo, H., Yuan, M., Mok, T.C., Yan, K., Yao, J., Chen, X., Liu,
Z., Lu, L., et al.: Cycleinr: Cycle implicit neural representation for arbitrary-scale
volumetric super-resolution of medical data. In: Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition. pp. 11631–11641 (2024)

3. Feng, J., Feng, R., Wu, Q., Zhang, Z., Zhang, Y., Wei, H.: Spatiotemporal implicit
neural representation for unsupervised dynamic mri reconstruction (2023)

4. Feng, L., Grimm, R., Block, K.T., Chandarana, H., Kim, S., Xu, J., Axel, L.,
Sodickson, D.K., Otazo, R.: Golden-angle radial sparse parallel mri: Combina-
tion of compressed sensing, parallel imaging, and golden-angle radial sampling
for fast and flexible dynamic volumetric mri. Magnetic Resonance in Medicine
72(3), 707–717 (2014). https://doi.org/https://doi.org/10.1002/mrm.24980,
https://onlinelibrary.wiley.com/doi/abs/10.1002/mrm.24980

5. Gao, S., Zhuang, X.: Multi-scale deep neural networks for real image super-
resolution. CoRR abs/1904.10698 (2019), http://arxiv.org/abs/1904.10698

https://doi.org/10.1097/RLI.0b013e318271869c
https://doi.org/10.1097/RLI.0b013e318271869c
https://doi.org/10.1097/RLI.0b013e318271869c
https://doi.org/10.1097/RLI.0b013e318271869c
https://doi.org/https://doi.org/10.1002/mrm.24980
https://doi.org/https://doi.org/10.1002/mrm.24980
https://onlinelibrary.wiley.com/doi/abs/10.1002/mrm.24980
http://arxiv.org/abs/1904.10698


10 Baik et al.

6. Han, Y., Yoo, J.J., Ye, J.C.: Deep learning with domain adaptation for ac-
celerated projection reconstruction MR. CoRR abs/1703.01135 (2017), http:
//arxiv.org/abs/1703.01135

7. Huang, W., Li, H., Pan, J., Cruz, G., Rueckert, D., Hammernik, K.: Neural implicit
k-space for binning-free non-cartesian cardiac mr imaging (2023)

8. Jung, H., Sung, K., Nayak, K.S., Kim, E.Y., Ye, J.C.: k-t focuss: A general com-
pressed sensing framework for high resolution dynamic mri. Magnetic Resonance
in Medicine 61(1), 103–116. https://doi.org/https://doi.org/10.1002/mrm.
21757

9. Kunz, J.F., Ruschke, S., Heckel, R.: Implicit neural networks with fourier-feature
inputs for free-breathing cardiac mri reconstruction (2024)

10. Lee, D., Yoo, J., Ye, J.C.: Compressed sensing and parallel mri using deep resid-
ual learning. In: The International Society for Magnetic Resonance in Medicine.
ISMRM (2017)

11. Lee, D., Yoo, J., Ye, J.C.: Deep artifact learning for compressed sensing and parallel
mri. arXiv preprint arXiv:1703.01120 (2017)

12. Li, G., Zhao, L., Sun, J., Lan, Z., Zhang, Z., Chen, J., Lin, Z., Lin, H., Xing, W.:
Rethinking multi-contrast mri super-resolution: Rectangle-window cross-attention
transformer and arbitrary-scale upsampling. In: Proceedings of the IEEE/CVF
International Conference on Computer Vision. pp. 21230–21240 (2023)

13. Lingala, S.G., Hu, Y., DiBella, E., Jacob, M.: Accelerated dynamic mri exploiting
sparsity and low-rank structure: k-t slr. IEEE Transactions on Medical Imaging
30(5), 1042–1054 (2011). https://doi.org/10.1109/TMI.2010.2100850

14. Mildenhall, B., Srinivasan, P.P., Tancik, M., Barron, J.T., Ramamoorthi, R., Ng,
R.: Nerf: Representing scenes as neural radiance fields for view synthesis. CoRR
abs/2003.08934 (2020), https://arxiv.org/abs/2003.08934

15. Müller, T., Evans, A., Schied, C., Keller, A.: Instant neural graphics primitives
with a multiresolution hash encoding. ACM Trans. Graph. 41(4), 102:1–102:15
(Jul 2022). https://doi.org/10.1145/3528223.3530127, https://doi.org/10.
1145/3528223.3530127

16. Pumarola, A., Corona, E., Pons-Moll, G., Moreno-Noguer, F.: D-nerf: Neural radi-
ance fields for dynamic scenes. CoRR abs/2011.13961 (2020), https://arxiv.
org/abs/2011.13961

17. Tancik, M., Srinivasan, P.P., Mildenhall, B., Fridovich-Keil, S., Raghavan, N., Sing-
hal, U., Ramamoorthi, R., Barron, J.T., Ng, R.: Fourier features let networks learn
high frequency functions in low dimensional domains. CoRR abs/2006.10739
(2020), https://arxiv.org/abs/2006.10739

18. Wang, S., Su, Z., Ying, L., Peng, X., Zhu, S., Liang, F., Feng, D., Liang, D.:
Accelerating magnetic resonance imaging via deep learning. In: 2016 IEEE 13th
International Symposium on Biomedical Imaging (ISBI). pp. 514–517 (2016).
https://doi.org/10.1109/ISBI.2016.7493320

19. Yoo, J., Jin, K.H., Gupta, H., Yerly, J., Stuber, M., Unser, M.: Time-dependent
deep image prior for dynamic mri (2021)

http://arxiv.org/abs/1703.01135
http://arxiv.org/abs/1703.01135
https://doi.org/https://doi.org/10.1002/mrm.21757
https://doi.org/https://doi.org/10.1002/mrm.21757
https://doi.org/https://doi.org/10.1002/mrm.21757
https://doi.org/https://doi.org/10.1002/mrm.21757
https://doi.org/10.1109/TMI.2010.2100850
https://doi.org/10.1109/TMI.2010.2100850
https://arxiv.org/abs/2003.08934
https://doi.org/10.1145/3528223.3530127
https://doi.org/10.1145/3528223.3530127
https://doi.org/10.1145/3528223.3530127
https://doi.org/10.1145/3528223.3530127
https://arxiv.org/abs/2011.13961
https://arxiv.org/abs/2011.13961
https://arxiv.org/abs/2006.10739
https://doi.org/10.1109/ISBI.2016.7493320
https://doi.org/10.1109/ISBI.2016.7493320

	Dynamic-Aware Spatio-temporal Representation Learning for Dynamic MRI Reconstruction

