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Abstract. Unsupervised anomaly detection (UAD) in brain imaging
is crucial for identifying pathologies without the need for labeled data.
However, accurately localizing anomalies remains challenging due to the
intricate structure of brain anatomy and the scarcity of abnormal ex-
amples. In this work, we introduce Reflect, a novel framework that
leverages rectified flows to establish a direct, linear trajectory for cor-
recting abnormal MR images toward a normal distribution. By learn-
ing a straight, one-step correction transport map, our method efficiently
corrects brain anomalies and can precisely localize anomalies by detect-
ing discrepancies between anomalous input and corrected counterpart.
In contrast to the diffusion-based UAD models, which require itera-
tive stochastic sampling, rectified flows provide a direct transport map,
enabling single-step inference. Extensive experiments on popular UAD
brain segmentation benchmarks demonstrate that Reflect significantly
outperforms state-of-the-art unsupervised anomaly detection methods.
The code is available at https://github.com/farzad-bz/REFLECT.

Keywords: Rectified flows · Unsupervised anomaly detection · Brain
MRI

1 Introduction

Brain anomaly detection using medical images is a critical task in neuroimaging,
with significant implications for early diagnosis and treatment planning. Brain
abnormalities such as tumors, lesions, or traumatic injuries often appear as struc-
tural deviations from normal anatomy. While supervised methods for localizing
anomalies are effective in many settings, they rely on large annotated datasets,
which are costly and often scarce, particularly for rare anomalies. This has led to
growing interest in unsupervised methods, where models learn the normal data
distribution and subsequently localize deviations as potential abnormalities.

In recent years, generative models have been widely investigated for
reconstruction-based unsupervised anomaly detection (UAD). Initial attempts
leverage Auto-Encoders (AEs) [2,3] and their variants, including Variational
Auto-Encoders (VAEs) [28,36]. Generative Adversarial Networks (GANs) [13],
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including AnoGAN [27] and f-AnoGAN [26], have also emerged as promising
alternatives to AE-based methods. However, these approaches tend to over-
fit the normal training data or yield blurry reconstructions. Normalizing flows
(NFs) [31,24] are another family of generative models that transform a simple
base distribution into a complex target distribution through a series of invert-
ible transformations, thereby allowing exact likelihood estimation. This makes
them particularly appealing for anomaly localization via out-of-distribution de-
tection [14,17,10,35]. However, NFs require complex architectures, are computa-
tionally expensive, and often involve iterative steps.

Progress in generative modeling has led to the rise of diffusion models [15], a
powerful class of probabilistic models that generate high-quality data by grad-
ually transforming noise into structured outputs through a learned iterative
process. Fueled by their impressive generative performance, diffusion models
have been increasingly adopted in medical imaging tasks, including unsupervised
anomaly detection [4,5,6,8,19,22,23,34]. AnoDDPM [34] resorts to a partial diffu-
sion strategy, where it adds noise to the image up to a certain timestep and then
recovers it via reverse diffusion, whereas pDDPM [4] applies diffusion patch-wise
to better capture local context. THOR [8] refines diffusion models by using im-
plicit temporal guidance via anomaly maps during the reconstruction process.
Inspired by diffusion models, Itermask [19] proposes iterative mask refinement
using reconstruction errors to better localize brain lesions in MRI. And very
recently, MAD-AD [6] treats abnormalities as noise in the latent space and uses
a masked diffusion process to selectively correct abnormalities. While diffusion
models offer a better overall performance, they tend to “memorize” patterns from
training data [29], which reduces their generalizability. Also, they need many it-
erative steps to reconstruct normal images, even with DDIM sampling [30]. Last
but not least, all these generative methods are primarily designed to generate
new samples (often from pure noise), and not to modify existing images. This
limits their applicability for the selective correction of images.

An alternative unsupervised approach uses self-supervised learning to restore
normal images corrupted with synthetic anomalies. Methods like Foreign Patch
Interpolation (FPI)[32] and Poisson Image Interpolation (PII)[33] introduce such
defects by blending patches from different normal images, enabling pixel-level
anomaly localization. Most recently, DISYRE v2 [23] introduced a cold-diffusion
pipeline that restores synthetically corrupted images with controlled anomaly
severity through iterative refinement. While these methods are effective, their
reliance on synthetic anomalies limits generalization, as these may not fully
capture the variability of real-world abnormalities.

To address the aforementioned limitations, we propose Reflect, an unsu-
pervised brain anomaly detection framework built on the recently introduced
rectified flows [21]. Rectified flows, which learn a transport map between two
different distributions through rectified trajectories, exhibit several advantages
over the previously mentioned generative models, such as improved stability,
high-fidelity reconstructions, and direct and efficient mapping, which enables
the mapping of a sample to a target distribution with a single step.
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Our work makes the following key contributions: i) We propose leveraging
rectified flows in latent space to enable optimal and straight transport of ab-
normal brain samples toward their normal counterparts, thereby facilitating un-
supervised brain anomaly detection with enhanced accuracy and reliability. To
the best of our knowledge, rectified flow has not been explored before for unsu-
pervised anomaly detection. By learning straight flow trajectories, our approach
requires fewer time steps, which enables high-quality correction of abnormal re-
gions in a single step while preserving normal regions. Unlike the often complex
formulations used in diffusion models or GANs, rectified flows’ objective directly
controls the geometry of the flow and provides a natural mechanism to correct
anomalous samples, making the method both theoretically elegant and practi-
cally efficient. ii) Moreover, we introduce an effective technique for generating
diverse and realistic anomalous brain MRIs using a random walk-based masking
strategy operating in the latent space. Masked regions are replaced with tex-
tured image segments or random noise, enhancing the variability and realism of
synthesized anomalies. iii) Extensive experiments on brain anomaly detection
benchmarks further demonstrate the superiority of our approach over recent
state-of-the-art unsupervised anomaly detection methods.

2 Preliminaries: Rectified Flows

Rectified flows [21], building upon the principles of continuous normalizing flows
[9], learn an ordinary differential equation (ODE) that transports samples from
an initial distribution π0 to a target distribution π1 along trajectories that are
as straight as possible in a continuous-time framework. Concretely, consider the
linear interpolation between random variables X0 ∼ π0 and X1 ∼ π1:

Xt = (1− t)X0 + tX1, t ∈ [0, 1]. (1)

Although Xt provides a continuous trajectory from X0 to X1, these straight-line
paths are non-causal and may intersect when considering different sample pairs.
Such intersections are undesirable for generative modeling, as they lead to non-
causal and non-deterministic dynamics. This interpolation is “rectified” into a
causal ODE flow {Zt : t ∈ [0, 1]} via

dZt

dt
= v(Zt, t), Z0 ∼ π0, (2)

where Zt represents the state of the rectified flow at time t, and v(·, t) is a
trainable velocity field. We seek v that best aligns with the direction of linear
interpolation paths. Therefore, the training objective minimizes the discrepancy
between the true instantaneous velocity of the interpolation and the learned
velocity:

min
v

∫ 1

0

E
[
∥(X1 −X0)− vθ(Xt, t)∥2

]
dt. (3)
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Fig. 1. Overview of Reflect. Training: a velocity network is trained to predict the
displacement between the latent representations of normal images and their corrupted
versions, using their linear interpolation and time t. Inference: Given an anomalous
test image, the velocity network computes the flow, allowing the image to be corrected
in a single step. Right: Rectified flows toward normality in the brain’s latent space.

In practice, we approximate the integral via Monte Carlo sampling:

min
θ

Et∼U[0,1]

[∥∥(X1 −X0)− vθ
(
Xt, t

)∥∥2]. (4)

Moreover, the reflow procedure, an iterative application of rectified flow
training to the outputs of a previous flow, can further straighten trajectories
and minimize discretization errors. This process helps prevent trajectory cross-
ings induced by paired input samples and further refines and rectifies the trans-
port paths toward the target distribution, thereby enhancing robustness and
enabling high-quality single-step sampling while preserving distribution fidelity.
This is achieved through the following objective:

min
θ

EZ0∼π0,t∼U(0,1)

[∥∥(Z1 − Z0)− v′θ(Zt, t)
∥∥2], Z0 = X0, (5)

where Z1 represents the transported sample (Z0) with the initial rectified flow.

3 Method

Interpreting π0 as the entire brain distribution encompassing both normal and
abnormal (or injured) brains, and π1 as the distribution of normal brains (with
π1 ⊂ π0), we train a rectified flow to learn a velocity field vθ(., t) that trans-
ports abnormal samples from π0 toward π1 (illustrated in Fig. 1), while leaving
normal samples unchanged since they already belong to π1. Our framework for
unsupervised brain anomaly detection using rectified flows (see Figure 1) con-
sists of three main stages: (1) generating paired abnormal and normal images in
the latent space, (2) rectified flow training to transport abnormal brains toward
normality, and (3) localizing anomalies. Below, we describe each stage in detail.
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3.1 Generating Paired Samples

Following [12,6], we transform the data into a latent space to stabilize train-
ing, improve output quality, and enable the interpretation of anomalies as noise
or out-of-distribution features. To achieve this, we adapt and fine-tune a pre-
trained VAE [25] for medical images, which compresses high-dimensional data
into a compact latent representation while retaining structures and semantic
information. Let X = {x(i)}Ni=1 denote the set of normal brain samples; the
encoder Eϕ maps each image to a latent code via y(i) = Eϕ(x(i)).

To train the rectified flow for transforming anomalous latent representations
to normal ones, we construct paired latent vectors (y0

i ,y
1
i ), where y1

i is a normal
sample and y0

i is an artificially corrupted version. The corruption is applied using
a binary mask m that specifies the regions to be altered, a random replacement
vector r indicating the direction of corruption, and parameter α ∈ [0, 1] which
controls the severity of corruption. The corrupted latent vector is given by:

y0
i =

(√
1− α · y1

i +
√
α · r

)
⊙m + y1

i ⊙ (1−m), (6)

which guarantees that if both y1
i and r follow a standard normal distribution,

the resulting corrupted image will also follow a standard normal distribution.
The introduced corruptions must closely mimic genuine injuries and span

the entire range of possible anomalies. We assume that the brain may exhibit
up to N distinct anomalous regions delineated by non-overlapping masks. The
mask of each region is generated by a random walk starting from a random
point within the brain and taking a random number of uniformly probable steps
to neighboring points. Masked positions then correspond to the points visited
during the walk. This strategy results in more realistic anomaly shapes than
rectangular patch-based masking [6].

Afterward, a replacement vector is assigned to each masked region, and the
final corrupted image is generated according to Eq. 6. For each region, the re-
placement vector is generated by randomly choosing between two distinct strate-
gies. The first strategy is to use random noise, motivated by the interpretation of
anomalies as noise in the latent space. Alternatively, we can use a cropped seg-
ment from the latent representation of a textured image (not necessarily medical
images) to impose more realistic and structured anomalies. For the first strat-
egy, in our implementation, we propose sampling random noise independently
for each channel according to:

r =
√
β · q +

√
1− β · p, (7)

where q ∈ R ∼ N (0, 1), p ∈ RH×W ∼ N (0, I), and β is uniformly sampled
from [0, 1] (fixed for all channels). This formulation can be interpreted as a
weighted combination of a global (image-level) random variable and a spatially
varying (pixel-wise) random vector, constructed such that the resulting r follows
a standard normal distribution. This strategy imposes spatial dependencies and
yields more realistic and structured corruptions in the latent space.
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3.2 Training Rectified Flows for Anomaly Correction

Our goal is to learn a mapping that transports abnormal latent samples y0 ∼ π0

back to the normal distribution π1. For this purpose, we train the velocity field
vθ(., t) using the paired latent data (y0,y1). The training objective becomes:

min
θ

Et∼U[0,1]

[∥∥(Y1 − Y0)− vθ
(
Yt, t

)∥∥2], (8)

where Yt = (1− t)Y0+ t Y1. Once the velocity model is trained, the learned ODE
(Eq. 2) defines a flow that can be numerically simulated using a standard ODE
solver (e.g., Euler method). Note that in many cases, including ours, a coarse
discretization (even a single Euler step) is sufficient due to the straightening
effect of the learned flow. Furthermore, after obtaining the first velocity model,
we can refine the flow by training a second rectified flow model v′(., t) using
the reflow process. This additional stage could further straighten the flows and
enhance the correction trajectories toward the target normal distribution (i.e.,
anomaly-free brains). We refer to this model as 2-Reflect, while the first model
is denoted as 1-Reflect.

3.3 Inference and Anomaly Localization

At test time, given an image x0
test (potentially containing anomalies), we first

encode it as y0
test = Eϕ(x0

test). Then, we solve the reverse-time ODE with the
trained velocity model using a single Euler step, which results in:

ỹ1
test = y0

test − vθ(y
0
test, 0), (9)

where ỹ1
test should ideally lie within the π1 distribution. The reconstructed nor-

mal image is decoded from the corrected latent space using the VAE decoder:
x̃1

test = Dϕ(ỹ
1
test). Finally, anomalies are localized by comparing the original

image to its reconstruction in both latent space and image space:

A(xtest) =
1

2

∣∣x̃1
test − x0

test
∣∣ + 1

2

∣∣ỹ1
test − y0

test
∣∣ . (10)

Higher differences indicate regions where the flow had to make larger corrections,
thereby signaling anomalies.

4 Experiments

4.1 Experimental Setting

Datasets. For our experiments, we employed BraTS’21 [1] that comprises 1251
brain scans across four modalities (T1, Contrast-Enhanced T1 (T1CE), T2, and
FLAIR), and ATLAS 2.0 [20], which contains 655 T1-weighted MRI scans. Both
datasets come with expert-annotated lesion masks. We extracted 20 central axial
slices from skull-stripped brains and padded them to a resolution of 256×256
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Table 1. Quantitative results obtained by different approaches. The best method
per modality and/or dataset is highlighted in bold, whereas the second one is
underlined. The performance gains over the best baseline are shown in green.

Method
ATLAS 2.0 BraTS’21

T1-w FLAIR T1CE T2-w T1-w

AE [2] MedIA’21 11.9 33.4 32.3 30.2 28.5
DDPM [15] Neurips’20 20.2 60.7 37.9 36.4 29.4
AutoDDPM [7] ICML Workshop’23 12.7 55.5 36.9 29.7 33.5
DAE [16] MedIA’22 11.1 79.7 36.7 69.6 29.5
Cycl.UNet [18] MICCAI’23 N/A 65.0 42.6 49.5 37.0
IterMask2 [19] MICCAI’24 35.3 80.2 61.7 71.2 58.5
MAD-AD [6] IPMI’25 36.1 76.2 68.5 73.2 63.4
1-Reflect Ours 41.6+5.5 85.1+4.9 73.0+4.5 79.6+6.4 69.7+6.3
2-Reflect Ours 40.8 +4.7 83.2+3.0 72.0+3.5 80.3+7.1 69.8+6.4

pixels. Both datasets are divided into training (80%), validation (10%), and
testing (10%) subsets, and only normal training slices are used for training, while
the single slice of the test subjects displaying the most prominent pathology is
reserved for inference. Moreover, the Describable Textures Dataset (DTD) [11]
is used and converted to gray-scale to serve as textured replacement images.
Evaluation metrics. Following [6], we assess models’ performance using the
Maximum Dice score, which reflects the highest Dice coefficient achieved as the
threshold varies from 0 to 1.
Implementation details. In each iteration, the number of masked regions is
randomly chosen between 1 and 4, and the number of random-walk steps is
randomly sampled between 0 and 200. 1-Reflect model underwent training
for 200 epochs for BraTS’21 and for 400 epochs for the ATLAS dataset with a
batch size of 96, using the AdamW optimizer and a learning rate of 5 × 10−4.
Afterward, 2-Reflect was trained on top of 1-Reflect for another 50 epochs
with a learning rate of 1 × 10−5. Also, we have used 5 reverse ODE correction
steps.

4.2 Results

Main quantitative results. We empirically evaluate the performance of the
proposed approach compared to relevant UAD methods proposed for brain MRI,
whose results are reported in Table 1. These values demonstrate that Reflect
substantially outperforms recent state-of-the-art brain UAD methods. Compared
to the second-best approach, i.e., MAD-AD [6], our method brings improvement
gains ranging from 4.5% to 6.4% in both datasets. In particular, in T1-w, which
seems to be the most difficult modality based on baselines’ results, Reflect
yields the highest difference gaps (similar to gains in T2-w). These results demon-
strate the superiority of our method across modalities and datasets, compared
to very relevant baselines. Regarding reflow’s effect (i.e., 2-Reflect) on the
first trained model 1-Reflect, results (Table 1) suggest that the reflow process
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Fig. 2. Qualitative results. Second row: Reconstructed images of their abnormal
input counterparts. Last row: Anomaly segmentation maps obtained by our approach.
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. . . .

Fig. 3. Transition between an anomalous to healthy brain using 10 reverse ODE steps
vs. a single step, showing that flows are well-rectified and effective in a single step.

did not improve the overall performance of the anomaly detection, likely because
the initial flows are already well-rectified, and the reflow process is attached to
the anomaly localization performance of the first method.

Qualitative results. To visually assess the effectiveness of Reflect, we depict
in Fig. 2 several visual examples of both the reconstructed images (second row)
and the predicted anomaly maps (last row) across all modalities of the BraTS
dataset. As these images highlight, Reflect successfully reconstructs realistic
“healthy” images, leading to accurately predicted anomaly maps. Fig. 3 depicts
a visual example of the transitions performed by the rectified flow.

Ablations. Model size: We evaluated five different model sizes to analyze the
trade-off between model efficiency and anomaly detection performance. While
larger models demonstrated slightly better performance, smaller variants still
achieved highly competitive results, significantly outperforming previous meth-
ods, making Reflect a strong choice for real-time or resource-constrained ap-
plications. Effect of the VAE model: We also investigated the effect of the VAE
model by comparing two variants with scale factors of 4 and 8. As illustrated in
Table 2, both VAEs perform well, with the VAE using a scale factor of 4 exhibit-
ing slightly better performance, likely due to its higher embedding dimensional-
ity. However, this comes at the cost of increased computational requirements.
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Table 2. Ablation studies (BRATS’21) on model size and VAE model employed.

Model #Params
Modality

FLAIR T1CE T2-w T1-w Avg

M
od

el
si

ze UNet XS ∼16 M 81.7 70.6 80.9 69.7 75.7
UNet S ∼64 M 83.9 72.1 81.0 69.6 76.7
UNet M* ∼145 M 85.1 73.0 79.6 69.7 76.9
UNet L ∼257 M 83.2 72.1 80.8 71.2 76.8
UNet XL ∼580 M 83.6 73.3 79.9 70.7 76.9

V
A

E KL-f4 ∼55 M 85.4 72.1 80.8 71.8 77.5
KL-f8* ∼84 M 85.1 73.0 79.6 69.7 76.9

5 Conclusion

We introduced Reflect, an unsupervised framework that leverages rectified
flows in latent space, which provides a direct one-step correction transport that
significantly improves reconstruction fidelity and anomaly localization. Experi-
mental results on established unsupervised anomaly detection benchmarks con-
firm that Reflect outperforms current state-of-the-art approaches, paving the
way for more robust and efficient diagnostic tools in neuroimaging. Future di-
rections include extending the framework to 3D data and testing cross-dataset
generalization to boost clinical relevance.

Disclosure of Interests. The authors have no competing interests to declare
that are relevant to the content of this article.
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