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Abstract. In Medical Visual Question Answering (Med-VQA), accu-
rate interpretation of clinical questions alongside medical images is cru-
cial for reliable diagnostic support. However, conventional methods of-
ten exhibit pronounced medical language biases that stem from imbal-
anced data distribution and question shortcut dependence, causing mod-
els to disproportionately rely on textual priors at the expense of valu-
able visual semantics. To mitigate this challenge, we propose a novel
Med-VQA debiasing approach called “Med-BiasX” that synergistically
combines two strategies, i.e., Energy-aware Confidence Constraint (ECC)
and Distribution-aware Dependence Calibration (DDC). Specifically, ECC
aims to reinforce correct answers and adjust the energy associated with
incorrect answers by leveraging the global normalization property of free
energy and the intrinsic properties of energy. DDC is designed to shift
the model’s dependency from question shortcuts to multimodal infor-
mation by explicitly measuring the similarity between predicted distri-
butions from different branches and prior distributions. Extensive ex-
periments on multiple medical standard benchmarks and bias-sensitive
benchmarks, SLAKE-BIAS and VQA-RAD-BIAS, consistently demon-
strate the robustness and superiority of our Med-BiasX approach over
state-of-the-art competitors.
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Energy Function · Debiasing

1 Introduction

Medical visual question answering (Med-VQA) systems [15, 13, 6, 5] operate at
the intersection of artificial intelligence and healthcare, aiming to develop models
that can accurately interpret medical images and answer clinical questions by
integrating visual and textual data. Early research adopts cross-modal inference
strategies from general VQA models [19, 21, 8]. Given the significant differences
between medical and general images and scarce medical data, direct transfer
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Fig. 1: During training, conventional Med-VQA models tend to learn spurious
correlation between questions and answers. Therefore, during testing, they ignore
the semantic visual information and rely on question shortcuts for predictions.

leads to severe overfitting. To address data scarcity, Nguyen et al. [17] propose
MEVF. Besides, RUBi [3] uses question-only branch outputs as masks to down-
weight biased predictions and up-weight informative ones. These approaches
have yielded notable improvements in the Med-VQA task. Our approach goes
further by detecting and quantifying bias through energy-aware calibration and
distribution-aware measures, explicitly removing spurious correlations.

However, a recent study [22] demonstrates that traditional Med-VQA mod-
els suffer from medical language biases, as shown in Fig. 1. Theoretically,
medical language biases stems from imbalanced data distribution and ques-
tion shortcut dependence [24, 4, 9, 12, 18]. On the one hand, medical datasets
often exhibit significant imbalances (the question types, such as how and what,
and their corresponding answers), where rare diseases or uncommon diagnostic
outcomes are underrepresented while common cases dominate the data. This
skewed distribution causes models to capture frequently occurring patterns at
the expense of rare but clinically critical features, substantially reducing diagnos-
tic performance in uncommon or complex cases. On the other hand, standard-
ized expressions and inherent semantic patterns, i.e., question types, prevalent
in clinical interviews and medical records lead to spurious correlation between
questions and answers in the training set when data is imbalanced. The spurious
correlation causes models to rely on superficial linguistic cues for “shortcut” rea-
soning rather than deeply analyzing the underlying pathological information in
medical images. Such shortcut dependence not only increases the risk of misdiag-
nosis in complex or borderline cases but also limits the system’s generalizability
to novel, unseen medical scenarios.

To address these challenges, we propose a novel Med-VQA debiasing ap-
proach, namely “Med-BiasX”, for improving the robust reasoning ability of
Med-VQA. The proposed Med-BiasX method integrates two well-established
mechanisms, i.e., Energy-aware Confidence Constraint (ECC) and Distribution-
aware Dependence Calibration (DDC). Specifically, inspired by free energy [16],
the purpose of ECC is to enforce confidence constraints by leveraging the global
normalization property of the log-sum-exp operation to comprehensively adjust
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Fig. 2: Illustration of the proposed Med-BiasX approach for addressing medical
language biases. Two well-established mechanisms, i.e., Energy-aware Confidence
Constraint and Distribution-aware Dependence Calibration, are synergistically
integrated to suppress question shortcuts and improve the model’s robustness.

the energy states of all candidate answers. Based on the inherent characteristic
that low energy correlates with high confidence, ECC seeks to maximize the
energy associated with question shortcuts while minimizing the energy of joint
predictions. Furthermore, DDC empowers the network to recalibrate the pre-
diction dependence by measuring the similarity between predicted distributions
from different branches and the prior distribution. Benefiting from the quantifi-
cation of the model’s reliance on question shortcuts, DDC dynamically adjusts
the model’s focus on multimodal features to improve robustness and accuracy.

2 Methodology

2.1 Preliminaries

The purpose of the Med-VQA task is to answer the question based on an image.
Given a dataset D = {vi, qi, ai}Ni=1, consisting of an image vi ∈ V, a question
qi ∈ Q and a ground-truth answer a ∈ A, the goal is to optimize a mapping fVQ :
V × Q → R|A| to generate predictions corresponding to a given image-question
pair. Without loss of generality, the function can be composed as follows:

f(vi, qi) = c(g(ev(v), eq(q)), (1)

where ev and eq are the image encoder and question encoder, respectively. g(·)
denotes the multi-model fusion network, and c(·) is an answer classifier to gen-
erate the logits f .
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2.2 Energy-aware Confidence Constraint

To address the challenges posed by language biases, the ECC mechanism is
meticulously designed to perform confidence constraint by dynamically adjusting
the energy states of all candidate answers based on the inherent properties of
energy. Specifically, we introduce a question-only branch as a bias-assisted model
with corresponding logits fq:

fq(qi) = c(g(eq(q))). (2)

Inspired by [16], we incorporate the free energy function into our training objec-
tives. Energy refers to a non-probabilistic scalar obtained by mapping each input
point x via a function E(x) : RD → R, with D denoting the dimensionality of
the input space. The free energy function E(x, f) is given by:

E(x, f) = −T · log
C∑
i

efi(x)/T , (3)

where C is the number of candidate answers and T is the temperature param-
eter. Free Energy converts the uncertainty and overall confidence predicted by
the model into a scalar by applying a log-sum-exp operation on the logits of
all candidate answers. This global normalization captures the model’s overall
confidence in an input, preventing it from merely focusing on the highest local
logit and ignoring the contributions of other answers.

In Med-VQA, medical language biases often guide the model to rely exclu-
sively on the question text, resulting in overly confident (low-energy) yet incor-
rect predictions. Free Energy thus serves as a simple and effective indicator to
quantify this bias. Based on Eq. (3), the confidence constraint can be formulated
using the squared hinge loss with a margin hyperparameter m:

LECC = (max(0,m+ E(x, f)− E(x, fq)))
2. (4)

If the energy difference E(x, f)− E(x, fq) > −m, the model penalizes question
shortcuts and promotes multimodal learning, thus preventing the model from
reaching a low-energy state in question-only scenarios and encouraging it to
incorporate visual information for more robust predictions.

2.3 Distribution-aware Dependence Calibration

Inspired by research on question shortcuts [7, 24], our DDC mechanism implicitly
calibrates the dependence of model prediction by promoting multimodal repre-
sentation learning while penalizing question shortcuts. The degree of spurious
correlation is reflected by applying the Kullback-Leibler divergence [20] D(·||·):

D(Pa||Pq) =
∑

Pa log
Pa

Pq
, (5)
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where Pa and Pq are the probability distributions of ground-truth answers and
the question-only branch outputs fq, respectively. A small D(Pa||Pq) indicates
that the question-only prediction closely resembles the answer’s prior distri-
bution, implying an over-reliance on spurious correlation. We thus treat the
negative of D(Pa||Pq) as an indicator of question shortcuts and penalize it. To
encourage the model to make predictions based on the semantic information of
multimodal features, we further define:

D(Pa||Pc) =
∑

Pa log
Pa

Pc
, (6)

where Pc is the probability distribution of logits fc. Finally, we combine these
divergences into the DDC loss:

LDDC = exp(D(Pa||Pc)−D(Pa||Pq)) + log(
D(Pa||Pc)

D(Pa||Pq)
+ 1), (7)

where D(Pa||Pc) is intended to steer the model towards extracting and utiliz-
ing robust semantic joint representations, thereby ensuring that predictions are
grounded in meaningful image-text correlations. In contrast, D(Pa||Pq) serves
as an indicator of bias by quantifying the model’s reliance on spurious correla-
tion. During the training progress, we observe a decreasing trend in D(Pa||Pc),
which reflects improved alignment with the semantic content, while an increasing
trend in D(Pa||Pq) highlights the model’s increasing awareness of and correction
against shortcut biases. These empirical trends validate our approach and un-
derscore its effectiveness in promoting reliable and unbiased predictions.

2.4 Training and Optimization

Based on the above analyses, the comprehensive training objective of the pro-
posed Med-BiasX approach encompasses a combination of various loss functions:

LTOTAL = LRMLVQA + LECC + LDDC. (8)

We adopt LRMLVQA [2] as the base loss term. By jointly optimizing these losses,
our approach can enhance the robustness and reliability of Med-VQA systems.

3 Experiments

3.1 Datasets and Implementation Details.

Datasets. We evaluate the effectiveness of our Med-BiasX on two medical
benchmark datasets, SLAKE [14] and VQA-RAD [10], and two bias-sensitive
benchmark evaluation protocols, SLAKE-BIAS [23] and VQA-RAD-BIAS [23].

Implementations Details. We employ a popular VQA architecture UpDn
as our baseline [1]. We implemented our Med-BiasX model in PyTorch with a
single RTX 3090 GPU and used the AdamW optimizer with a weight decay of
0.001. The batch size B is set to 64. The learning rate is set to 0.002. The value
of the margin hyper-parameter m is set to 1.0.
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Table 1: Comparisons with SOTAs on the SLAKE-BIAS and VQA-RAD-BIAS.

Methods Reference SLAKE-BIAS VQA-RAD-BIAS
All Open Closed All Open Closed

SAN [19] CVPR’16 26.02 48.30 6.42 16.29 59.73 6.05
MFB [21] ICCV’17 30.56 55.70 8.44 22.53 72.12 10.84
BAN [8] NIPS’18 17.50 30.90 5.72 17.30 67.70 5.42
UpDn [2] CVPR’18 31.45 59.90 6.42 26.67 74.78 15.33

MEVF+SAN [17] MICCAI’19 18.62 32.60 6.33 22.11 68.14 11.26
MEVF+BAN [17] MICCAI’19 19.33 35.00 5.54 19.07 62.39 8.86

RUBi [3] NIPS’19 33.88 60.30 10.64 81.27 60.62 86.13
LPF [11] SIGIR’21 40.34 43.70 37.38 41.52 65.04 35.97

GGE-iter [7] ICCV’21 35.05 61.30 11.96 21.60 51.33 14.60
RMLVQA [2] CVPR’23 76.42 60.50 90.41 89.45 69.03 94.26

Med-BiasX Ours 78.33 64.80 90.24 91.48 76.11 95.10
Increased ↑ +1.91 +3.50 -0.17 +2.03 +1.33 +0.84

Table 2: Comparisons with SOTAs on the SLAKE and VQA-RAD.

Methods Reference SLAKE VQA-RAD
All Open Closed All Open Closed

SAN [19] CVPR’16 76.00 74.00 79.10 52.89 31.64 65.50
MFB [21] ICCV’17 73.89 71.63 77.40 54.10 41.90 62.13
BAN [8] NIPS’18 76.25 75.97 76.68 55.43 48.60 59.93
UpDn [2] CVPR’18 81.34 79.84 83.65 66.74 51.40 76.47

MEVF+SAN [17] MICCAI’19 75.97 74.72 77.88 60.71 40.65 74.05
MEVF+BAN [17] MICCAI’19 77.76 75.97 80.53 62.34 43.09 75.14

RUBi [3] NIPS’19 78.42 76.43 81.49 51.22 36.87 60.66
LPF [11] SIGIR’21 75.59 73.33 79.09 56.32 49.72 60.66

GGE-iter [7] ICCV’21 79.83 79.22 80.77 65.19 49.16 75.74
RMLVQA [2] CVPR’23 81.43 80.47 82.93 65.41 49.16 76.10

Med-BiasX Ours 82.47 80.62 85.34 67.42 50.64 78.46
Increased ↑ +1.04 +0.15 +1.69 +0.68 -0.76 +1.99
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Table 3: Ablation studies for different
modules of Med-BiasX on SLAKE-BIAS.

Methods ECC DDC All Open Closed

Baseline - - 76.42 64.80 90.41
w/ ECC ✓ - 77.82 63.30 90.59
w/ DDC - ✓ 77.12 62.50 89.97

Med-BiasX ✓ ✓ 78.33 64.80 90.24

Fig. 3: Comparison of accuracy
on SLAKE-BIAS with different
parameter configurations.

3.2 Comparisons with State-of-The-Arts

To evaluate the effectiveness of our Med-BiasX in mitigating language biases,
we conduct comprehensive experiments against a variety of state-of-the-art base-
lines on SLAKE-BIAS, VQA-RAD-BIAS, SLAKE, and VQA-RAD datasets. The
comparative results are summarized in Table 1 and Table 2.

Evaluation on Medial Language Biases Benchmark: We can obtain
the following observations: 1) The proposed Med-BiasX method outperforms all
state-of-the-art baselines with significant improvements, underscoring its robust-
ness in addressing medical language biases. 2) In particular, most methods ex-
hibit a substantial performance decline on SLAKE-BIAS and VQA-RAD-BIAS
compared to SLAKE and VQA-RAD. 3) Natural debiasing models [11, 3, 7] yield
suboptimal results, highlighting limited generalizability in the medical domain.

Evaluation on Medial Standard Benchmark: To verify the ID perfor-
mance of our Med-BiasX, we conduct reliable experiments on SLAKE and VQA-
RAD. Importantly, the proposed Med-BiasX approach consistently achieves the
best performance and surpasses the second-best method by 1.04% and 0.68%,
respectively. It is crucial to note that many existing methods perform well on
ID data and experience pronounced degradation under OOD conditions.

3.3 Ablation Studies

We conduct comprehensive ablation studies by systematically evaluating the im-
pact of each component on SLAKE-BIAS. Four variations are involved, including
1) BASE is regarded as the base loss [2]. 2) BASE w/ ECC adds the ECC
mechanism based on the basic model. 3) BASE w/ DDC adds the DDC mech-
anism to the basic model. 4) Med-BiasX is considered as the “full” model. The
comparative results are presented in Table 3. It is observed that both ECC and
DDC components can impair spurious correlation and enhance robustness.

3.4 Parameter Analysis

We conduct an exhaustive parameter analysis of the proposed Med-BiasX method
under different hyper-parameter configurations. Specifically, we focus on analyz-
ing the effects of the margin hyper-parameter m, as shown in Eq. (4). Through



8 Huanjia Zhu, Yishu Liu†, Chengju Zhou, Guangming Lu, and Bingzhi Chen†

systematic experimentation and detailed analysis in Fig. 3, it can be observed
that our Med-BiasX method achieves peak performance when m = 1. This anal-
ysis highlights that an optimal selection of the margin hyper-parameter can
achieve superior performance of the Med-BiasX model.

Does the picture contain heart? Which is the biggest in this image,lung,liver or heart?
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Ours: LungBaseline: Chest

Fig. 4: Qualitative analysis of our Med-BiasX. We present two representative
examples for the question type “Yes/No” (left) and “Which” (right).

3.5 Qualitative analysis

To further demonstrate the effectiveness of our Med-BiasX method, we conduct
a qualitative analysis on SLAKE-BIAS for Med-BiasX and the baseline UpDn,
as depicted in Fig. 4. In both examples, regardless of whether the correct region
in the image was overlooked (left) or identified (right), UpDn predicted the most
frequent answer for corresponding question type in the train set, revealing its
reliance on spurious correlation. In contrast, our Med-BiasX model focuses on the
correct regions and successfully predicts rare answer categories. These examples
underscore the effectiveness and robustness of our method.

4 Conclusion

In this paper, we identified the challenge of medical language biases posed by
imbalanced data distribution and question shortcut dependence. To address this
challenge, we proposed a Med-VQA debiasing approach called “Med-BiasX”,
which integrated energy-aware confidence constraint and distribution-aware de-
pendence calibration for robust Med-VQA. The proposed Med-BiasX method
leverages the inherent properties of energy to implicitly conduct confidence con-
straint and measures the similarity between prediction distributions from differ-
ent branches and prior distributions to recalibrate dependence on multimodal
representation. Comprehensive experiments prove the effectiveness and robust-
ness of our Med-BiasX method.
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