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Abstract. The conventional histopathology paradigm, while remaining
the gold standard for clinical diagnosis, is inherently constrained by its
lengthy processing time. The emergence of virtual staining in compu-
tational histopathology has catalyzed significant research efforts toward
developing rapid and chemical-free staining techniques. However, cur-
rent methodologies are primarily applicable to well-prepared thin tissue
sections and lack the capability to effectively process the section-free
thick tissues. In this work, we present a novel approach that utilizes flu-
orescence light-sheet microscopy to directly image thick tissue samples,
followed by image translation to generate virtually stained hematoxylin
and eosin (H&E) images. To overcome the insufficient exploration of
pathological features in current methods, we introduce Semantic Con-
trastive Guidance (SemCG), which enforces morphological consistency
between fluorescence inputs and H&E outputs. Additionally, we incor-
porate subtype-aware classification to enhance the discriminator’s abil-
ity to learn domain-specific pathological knowledge. Experimental results
demonstrate that our proposed modules offer an advantage in generating
high-quality images. We anticipate that this sectioning-free virtual stain-
ing framework will have significant potential for clinical rapid pathology
applications, offering a transformative improvement to current histolog-
ical workflows. Our code is available at https://github.com/commashy/
SemCG-Stain.

Keywords: Virtual staining - Computational pathology - Section-free
microscopy - Generative adversarial network.

1 Introduction

Routine histological staining, a cornerstone technique in pathological diagno-
sis, predominantly relies on chemical reagents and sectioning processes [4,16].
This conventional methodology typically requires an extensive preparation pe-
riod spanning several days, encompassing multiple critical steps: tissue fixa-
tion, dehydration, paraffin embedding, sectioning, dewaxing, and staining. The
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prolonged processing time, coupled with the necessity for specialized labora-
tory infrastructure and skilled personnel, significantly restricts its applicability
in rapid histopathology scenarios. These limitations become particularly pro-
nounced in time-critical clinical situations, such as intraoperative tissue exami-
nation where surgeons require immediate pathological feedback to guide surgi-
cal decisions [20,12]. These constraints have driven the scientific community to
explore alternative approaches that can provide comparable histological infor-
mation while overcoming the temporal and technical limitations of conventional
methods.

Virtual histological staining has emerged as a promising direction in med-
ical image computing, allowing the rapid conversion of non-H&E tissue scans
to conventional H&E-like images [19,18,26,9,3,10]. This paradigm can signifi-
cantly reduce workload and accelerate pathological assessments in both research
and clinical settings. However, the majority of the aforementioned research has
predominantly focused on well-prepared thin sections (~3 to 5 wm in thick-
ness). The acquisition and preparation of these thin sections—including paraffin
embedding, tissue sectioning, and chemical dewaxing—mnot only lead to pro-
longed turnaround times but also impose significant demands on laboratory in-
frastructure. Recent advancements in section-free imaging techniques have rev-
olutionized the visualization of unprocessed thick tissue samples, bypassing the
need for traditional sectioning procedures [5,6]. Several pioneering studies have
explored virtual H&E staining approaches using section-free microscopy tech-
niques [3,13,1]. However, these methods predominantly rely on point-scanning
microscopy systems for large-scale tissue imaging, such as photoacoustic mi-
croscopy and confocal microscopy, which inherently suffer from low acquisition
speed due to their sequential scanning nature. In an effort to overcome this lim-
itation, recent advancements have demonstrated the potential of wide-field mi-
croscopy systems combined with cycleGAN architectures for rapid H&E staining
generation [2,25,24]. While these approaches have shown promise in accelerating
the virtual staining process, they are fundamentally constrained by their re-
liance on the basic cycleGAN framework, which lacks sophisticated mechanisms
for precise control over complex pathological features and tissue patterns. This
limitation becomes particularly evident when dealing with heterogeneous human
tissue with cancer which is crucial for accurate pathological diagnosis.

In this work, we introduce SemCG-Stain, an innovative virtual staining frame-
work achieving H&E-equivalent image generations from thick tissue scans, facil-
itating rapid, sectioning-free, and staining-free tissue analysis. Our key contri-
butions can be summarized as follows:

1. Semantic Contrastive Guidance (SemCG): We propose a contrastive loss
leveraging embeddings from a pathology-specific large vision model, PLIP [7],
encouraging consistent morphological features between fluorescence inputs
and target H&E outputs.

2. Pathology-aware Discriminator (PathD): A multi-scale adversarial module
incorporating subtype-aware classification signals is employed to effectively
integrate domain-specific pathological knowledge.
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Fig. 1. Structure of the proposed SemCG-Stain. (a) The overall SemCG-Stain illustra-
tion. (b) The training process of SemCG. (c) The structure of the PathD.

3. Experiments conducted on sectioning-free human lung tissue samples demon-
strate that our proposed model surpasses other baseline models commonly
employed in the virtual staining domain, achieving superior performance in
both image quality and clinical pathological relevance.

2 Methodology

SemCG-Stain translates the fluorescence image of thick tissue into H&E staining
while preserving key pathological features. Firstly, we introduce SemCG to align
high-level semantic features across modalities, and then we present the PathD
for pathological knowledge fusion.

2.1 PLIP-Based Semantic Contrastive Guidance

To capture domain-invariant pathological features necessary for accurate image
translation, we leverage semantic embeddings from the PLIP [7]. Although we
adopt PLIP in this work, the framework is encoder-agnostic; any pathology-
oriented CLIP variant such as CONCH [11] can be substituted without alter-
ing the rest of the pipeline. Our approach incorporates two specialized PLIP



4 J. OH et al.

encoders: PLIP, (partially fine-tuned), which is tailored for fluorescence im-
ages, and PLIPg, which is dedicated to the target H&E domain. Specifically,
for PLIP,4, we fine-tune the final two layers while keeping the remaining ar-
chitecture frozen. This approach not only enables the model to adapt gen-
eral pathology-relevant knowledge to the fluorescence domain but also ensures
computational efficiency by minimizing the number of trainable parameters. In
contrast, PLIPp remains entirely frozen to preserve its pretrained capability
of embedding H&E images without additional modification. This dual-encoder
strategy ensures robust feature extraction across domains while maintaining the
integrity of domain-specific pathological representations.

For each mini-batch, patch-level embeddings are extracted from both fluores-
cence (via PLIP,4) and H&E (via PLIPp) and stored in a continuously updated
memory bank, the Memory bank A and B showing in Fig. 1. We then perform a
two-stage hard negative sampling: (1) identify the top-k most similar embeddings
(via cosine similarity) to the anchor embedding, and (2) randomly select a subset
of these top-k to serve as “hard negatives.” An InfoNCE [17]-based loss aligns
corresponding fluorescence/H&E embeddings while repelling noncorresponding
pairs. Formally, for an anchor embedding ea from a fluorescence image and a
positive embedding e}, from H&E, the basic contrastive loss is:

. exp(eA-eB/T)
‘Ccontrast = 1Og N — ) (1>
exp(ear-es/7) + Y., exp(ea ey /7T)
where 7 is the temperature, {e; }2"_; are the hard negatives sampled from
the memory bank, and N is their number.

Furthermore, we compute the contrastive loss in both directions: £LAB, . for
G4 and LBA . for Gp. The aggregated contrastive loss is then defined as:
L:AB + £BA
£contrast - )\clip_contrast( contrast 2 contrast )7 (2)

where Aclip contrast 1S @ weighting factor, and this loss is subsequently incor-
porated into the overall generator objective.

2.2 Pathology-aware Discriminator and Stabilization Strategies

In this work, we focus on lung adenocarcinoma (LUAD), which includes several
different subtypes within our dataset. Given the diverse pathological character-
istics exhibited by different LUAD subtypes, we propose the PathD to guide
the generator toward realism and subtype consistency. Building upon the multi-
scale architecture introduced in [23], our PathD is designed to support subtype-
aware discrimination by simultaneously generating a real/fake prediction map
and predicting the subtype classification, as shown in Fig. 1c. The cross-entropy
classification loss for the discriminator is given by:

Lats = = Eqxn | log P D)) 3)

To further stabilize adversarial training, we incorporate:
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— Spectral Normalization: Applied to all convolutional layers to constrain
the Lipschitz constant and mitigate abrupt gradient changes [15].

— Zero-Centered Gradient Penalty: Imposed on both real and generated
samples to keep gradients near zero as the generator distribution approaches
the real data distribution [14,21].

and the zero-centered gradient penalty is:
g g N
L6p = 3 Banpron||VeD@)I3] + 3 Eampin| V2 D@1 (4)
where v is a hyperparameter.

2.3 Loss Functions

In addition to the proposed contrastive loss Lcontrast, adversarial loss Efdv and

classification loss L5 described above, we retain the cycle-consistency principle

from CycleGAN [27]. The total loss for the generator is formulated as:
EG = Egdv + )\cls £Cls + Acycle ‘Ccycle + )\contrast [/contrasta (5>
and the loss for the discriminator is:
Lp =L, + Xas Las + Aap Lap, (6)

where Acis, Acycles Acontrast, and Agp are weighting factors controlling the contri-
bution of each term.

3 Experiments and Results

3.1 Datasets

We collected 12 lung tissue blocks spanning LUAD sub-types (Acinar, Micro-
papillary, Lepidic, Papillary, Solid, and Normal). Each specimen was formalin
fixed at the hospital, transported to the laboratory, briefly surface-stained with
DAPI (10 pg/mL, 1-2 min), and imaged intact with an open-top UV light-
sheet microscope (266 nm excitation). The same blocks were subsequently pro-
cessed through the standard histology workflow-fixation, paraffin embedding,
microtome sectioning, and H&E staining-to yield corresponding thin-section ref-
erence slides. This produced a dataset of thick-tissue fluorescence images and
thin-section H&E images. We allotted 8 samples to training and 4 to testing,
maintaining subtype balance, and tiled both modalities into 256 x 256 patches,
resulting in 29,835 training and 10,721 testing patches.

3.2 Implementation Details

Our model was implemented in PyTorch and trained on a single NVIDIA GeForce
RTX 3090 GPU. We utilized the Adam optimizer with a learning rate of 2 x 1072,
B1 = 0.0, and B2 = 0.9 for both the generator and discriminator. The learning
rate remained constant until epoch 50, then decayed linearly to 0 by epoch 150.
We set Aeis = 0.1, Aeyere = 10, Acontrast = 0.2 and Agp = 3 in 5 and 6.
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Reference Fluoresence ~ SemCG-Stain (ours)

Fig. 2. Qualitative comparison of virtual H&E staining results. The top row shows
the whole-slide view with red and yellow rectangles indicating regions of interest. The
subsequent rows display zoomed-in views of these regions: the yellow region, rich in
fibrotic components, and the red region, representing a papillary area.

3.3 Comparison with State-of-the-arts

To assess our framework’s effectiveness, we compared it with state-of-the-art
virtual staining methods, including CycleGAN [27], UTOM [9], and Wang et
al. [22]. Fig. 2 qualitatively compares our method with baseline approaches. The
top row shows a whole-slide view, revealing mismatched pathological features
and missing information between the reference H&E and fluorescence images.
This discrepancy arises because the reference H&E staining is performed on
thin sections from the sample surface, while direct staining of the entire thick
sample is impractical. Thus, the thin-section H&E staining only captures surface
tissue structures, serving as a reference rather than an exact ground truth.

The subsequent rows provide zoomed-in views of the marked regions—yellow
(fibrotic region) and red (papillary). While baseline models capture general fea-
tures like background, foreground, and nuclear structures, they often generate
over-saturated outputs with excessive pink and purplish tones. These exagger-
ated colors obscure subtle histopathological details and lead to inconsistent stain-
ing. In contrast, SemCG-Stain produces more natural and balanced stain tones,
maintaining fine morphological details and enabling clearer differentiation of tis-
sue structures, which is essential for accurate pathological analysis.

Table 1 summarizes quantitative results on the testing dataset using Fréchet
Inception Distance (FID), Kernel Inception Distance (KID), and Inception Score
(IS). Our method achieves an FID of 54.57, significantly lower than CycleGAN
(76.51), UTOM (64.11), and Wang et al. (64.67), indicating closer alignment with
real H&E image distributions. Additionally, our KID score of 2.47 outperforms
the baselines (CycleGAN: 6.05, UTOM: 4.84, Wang et al.: 4.44), confirming
superior feature-level similarity. Finally, our IS of 3.39 surpasses baseline scores,
demonstrating enhanced realism and image quality.
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FID| KID (x100)] IST

CycleGAN [27] 76.51  6.05£0.34 3.02£0.07
UTOM [9] 64.11 4.84£0.24 3.05£0.04
Wang et al. [22] 64.67  4.4440.21  3.28+0.06

SemCG-Stain (ours)|54.57 2.47+£0.13 3.39+0.06

*Bold and underlined indicate the best and the second-best results, respectively.
Table 1. Quantitative evaluation on testing data.
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Fig. 3. Distributions of feature embedding via TSNE (t-Distributed Stochastic Neigh-
bor Embedding).

3.4 Feature-based Quantitative Assessment of Virtual H&E

In addition to the aforementioned technical performance metrics (FID, KID,
and IS), we performed an analysis of feature distribution patterns between
model-generated images and references. Specifically, we conducted a compar-
ative analysis of image embeddings extracted by PLIP from virtually stained
images and their corresponding chemically stained counterparts. As illustrated
in Fig. 3, the feature distributions of CycleGAN [27], Wang’s model [22], and
UTOM [9] exhibit substantial overlap and clustering (highlighted by the gray cir-
cle), indicating similar characteristics in their output patterns. Moreover, those
three models demonstrate significant dispersion and deviation from the clinical
standard staining pattern. In contrast, our method exhibits substantially closer
alignment with the reference distribution, with markedly reduced discrepancies
compared to other baseline models. This quantitative analysis demonstrates that
our model generates H&E staining results that are more clinically relevant and
visually consistent with standard references than existing approaches.
Furthermore, we assessed the distribution patterns of different LUAD sub-
types using our proposed model. As illustrated in Fig. 3, distinct boundaries
are observed among the subtypes. Notably, both normal and solid samples are
positioned significantly distant from other subtypes, while the distributions of
acinar and papillary subtypes exhibit closer proximity. This spatial arrangement
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FID| KID (x100){ ISt
Baseline U-Net |70.74 3.774+0.16 3.49+0.07
+ PathD 61.57  2.8640.17 3.754+0.07
+ SemCG 59.67  3.18+0.17 3.62+0.09
+ PathD + SemCG|54.57 2.47+0.13 3.39+0.06

*Bold and underlined indicate the best and the second-best result, respectively.
Table 2. Ablation study on the proposed SemCG and PathD modules.

aligns with their histological characteristics: the acinar and papillary subtypes
share greater morphological similarity due to their retention of glandular dif-
ferentiation features and relatively organized cellular architecture. In contrast,
the solid subtype, characterized by a complete loss of glandular structures and
disorganized cellular arrangement, demonstrates a distinct distribution pattern.
The solid subtype typically indicates a higher degree of malignancy and a poorer
prognosis. The findings in Fig. 3b further validate the capability of our virtual
staining model to provide meaningful diagnostic insights.

3.5 Ablation Study

In this study, we demonstrate that the performance of virtual staining on com-
plex datasets, particularly unprocessed thick tissue samples, is constrained by
the model’s limited incorporation of essential pathological knowledge. To inves-
tigate the significance of our proposed SemCG and PathD in addressing this
challenge, we conducted the ablation study on these modules. As summarized
in Table 2, the integration of PathD into the baseline U-Net architecture yields
a substantial improvement, with the FID score decreasing from 70.74 to 61.57.
Here, the baseline model is a vanilla CycleGAN that uses a U-Net generator
augmented with an attention bottleneck. Furthermore, the addition of SemCG
leads to additional performance enhancements, underscoring the complementary
roles of these components in improving virtual staining quality for complex thick
tissue samples.

4 Conclusions

In this work, we presented a novel framework for virtual H&E staining of section-
free thick tissue samples that overcomes the limitations of conventional histo-
logical staining by leveraging advanced computational imaging techniques. Our
approach centers on a SemCG mechanism that robustly aligns high-level patho-
logical features across modalities, and a PathD that enforces subtype consis-
tency and enhances image realism through multi-scale adversarial learning and
stabilization strategies. Quantitative evaluations using different metrics demon-
strate that our method significantly outperforms state-of-the-art approaches,
while qualitative assessments confirm that our framework preserves subtle his-
tological details and maintains balanced stain tones. These improvements are
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critical for reliable pathological interpretation and have the potential to acceler-
ate rapid diagnostic workflows in clinical settings.
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