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Abstract. Multi-modal brain disease diagnosis provides a more robust
and comprehensive prediction of diverse diseases by integrating medi-
cal data from different modalities. However, recent methods generally
fail to account for the modality-specific discriminant regions in seman-
tic information, which causes models to focus on non-lesion areas while
neglecting the actual lesion regions. To address this issue, we propose Se-
mantic Prompt-guided Graph Learning (SPromptGL), a novel approach
for multi-modal disease prediction that captures the discriminative re-
gions of different modalities while enhancing their interaction and fusion.
Firstly, to explore the relationship between subjects of different modal-
ities, we propose constructing an interactively multi-relation graph for
multi-modal data. It is dynamically learned by designing graph learning
loss terms. The multi-layer graph convolutional neural network is uti-
lized to learn context-enriched representations for each subject. Then, to
better capture the significant region representations of different modali-
ties, we propose a semantic prompt-guided learning network to excavate
the modality-specific lesion regions of related diseases. Specifically, a set
of semantic prompts of related brain diseases is first guided to capture
fine-grained local details to enhance patch representation. And then we
couple with a relation-aware embedding strategy to refine discriminative
features. Compared with state-of-the-art methods, our approach achieves
superior performance on different benchmark datasets. Code is available
at https://github.com/wanxixi11/SPromptGL.

Keywords: Brain Disease Prediction · Multi-relation Graph · Graph
Convolutional Neural · Prompt-guided Learning Network.

1 Introduction

The treatment and prevention of Alzheimer’s Disease (AD) [3, 32] and Autism
Spectrum Disorder (ASD) [1,10] have gained significant attention, with notable
advancements in computer-aided prediction using deep learning methods, such
as Graph Neural Networks (GNNs) [15, 16, 32], Convolutional Neural Networks
(CNNs) [17, 28] and Recurrent Neural Networks (RNNs) [25, 31]. Among that,
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Kazi et al. [13] propose InceptionGCN that fuses multi-modal data to build an
overall graph for the disease prediction problem. Zheng et al. [32] also propose to
predict brain diseases by constructing a global graph with multi-modal features.
Zhou et al. [33] propose the GIGCN method, which separately constructs two
graphs by capturing dual relationships among regions of interest in the brain.
Although the aforementioned graph-based methods for brain disease prediction
use various graphs (e.g., region, sample), they fail to effectively capture multi-
modal data dependencies and interactions.

On the other hand, Large Language Models (LLMs) [2, 6] have been widely
applied in the diagnosis of brain diseases, facilitating the development of precise
and robust models while reducing the reliance on large-scale annotated datasets.
Unlike natural images, brain disease-related data typically exhibit pathological
relevance only in specific localized regions. For example, studies have demon-
strated a significant correlation between the hippocampus and AD [24, 33]. In
recent years, some approaches have employed region-based prompts to guide
foundational models in focusing on critical areas within medical images [6, 24].
However, most existing methods primarily rely on simple local feature weight-
ing, failing to fully explore the fine-grained information of pathological regions
within the modality and diverse relationships between local details [6, 24,27].

To overcome the aforementioned issues, we propose a novel Semantic Prompt-
guided Graph Learning (SPromptGL) for multi-modal-based brain disease pre-
diction. The core idea of our SPromptGL is to formulate multi-modal informa-
tion of the brain as a multi-relation graph representation models relationships
of subjects via leveraging multi-modal data and then develop a novel prompt-
guided learning network to capture the discriminant regions for the brain disease
prediction task. In detail, we first propose a new interactively multi-relation
graph strategy to learn a more effective graph with semantic constraints for
multi-modal data. Then, a multi-layer graph convolutional neural network is
employed to learn context-enhanced feature representation for each subject. Fi-
nally, to identify the discriminating lesion area and reduce the noise effect of
non-lesion areas, a prompt-guided embedding network is designed to explore the
modality-specific fine-grained lesion regions of related diseases. Specifically, a
set of semantic prompts of related brain diseases is generated to enhance patch
representations, and we couple them with a relation-aware embedding strategy
to refine discriminative local contexts. Overall, the main contributions of this
paper are summarized as follows:

• We propose to employ a multi-relation graph representation for brain dis-
ease prediction tasks, where each relation optimizes multi-modal data. The
proposed method can not only utilize features of each modality but also fully
exploit the dependencies and interactions of different modalities.

• We propose a prompt-guided embedding network, which first guides semantic
cues to obtain discriminant local information and then embeds fine-grained
local details obtained into global contexts for better exploiting each modal
representation for each subject. This proposed strategy can distinguish the
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modality-specific lesion regions of related diseases and reduce the noise in-
terference in the no-lesions, improving brain disease diagnosis.

• Experimental results on the commonly used TADPOLE and ABIDE datasets
demonstrate that the proposed method is superior to other state-of-the-art
methods for predicting brain diseases.

2 The Proposed Method

We propose a semantic prompt-guided learning network with a graph-based
method for brain disease prediction, capturing discriminative regions and mod-
eling cross-modal relationships to improve feature representation, as shown in
Fig. 1. Firstly, we conduct feature selection on the morphological features of
each modality to extract complete multi-modal features for each subject. Sub-
sequently, A multi-relation graph representation is introduced to model diverse
subject connections, followed by a multi-layer graph convolutional network to
learn context-enriched feature representations. Finally, we propose a prompt-
guided embedding network to enhance modality-specific representations. This
strategy leverages semantic prompts related to brain diseases to capture dis-
criminative local features, which are then integrated into global contexts by
modeling their relationships to refine features of multi-modal data.

Fig. 1. The overall framework of our proposed method, which includes Graph-based
Feature Representation (GFR) and Prompt-guided Learning Network (PLN).
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2.1 Graph-based Feature Representation

Let X = {X(1), X(2) · · ·X(M)} denote the obtained relatively complete multi-
modal features where M is the number of modalities. It is known that, for the
multi-modal representation, the goal is to obtain the complementary feature
and address the modal gap by exploiting multi-modal cues [5, 9, 29]. Thus, we
propose a Graph-based Feature Representation (GFR) to fully leverage the com-
plementary information and mitigate modality gaps. Specifically, we construct a
multi-relation graph that captures the diverse relationships between the multi-
modal features of the different subjects. That is, each node is the multi-modal
feature of each subject, and the edge encodes the similarity between subjects of
each modality. There are M modalities corresponding to M types of edges. We
utilize the cosine function to calculate the similarity A(r) between subjects where
r is the r-th relation via utilizing the m-th modal features. To learn a more ef-
fective graph, we introduce an additional regularization constraint LS(A

(r)) into
the graph [11, 32]. Additionally, we construct a supervision graph Â with the
corresponding labels of subjects. Thus, the total loss function LG is defined as,

LG(A) =
1

M

M∑
r=1

(
LS(A(r)) + ||Â−A(r)||22

)
, (1)

where A = {A(1) · · ·A(M)} denotes a multi-relation graph. The Â is utilized to
better identify the category of nodes. If the i and j subjects are of the same
category, Âij = 1; otherwise, Âij = 0. ∥ · ∥2 denotes the Frobenius norm. Based
on the above, we then employ the multi-layer Dynamical Graph Convolutional
Network (DGCN) [22] to learn the context-aware representation for each subject
by capturing the dependencies of different subjects. To be specific, the layer-wise
message propagation rule of DGCN is defined as,

F (r,l+1) = ReLU(A(r)F (r,l)Θ(r,l)), (2)

where l = 0, 1 · · ·L−1 and F (r,0) = Concat[X(1) · · ·X(M)] and Θ(m,l) denotes the
layer-wise trainable weight parameters. We fuse the l-th layer output as F̂ l+1 =∑M

r=1 wrF
(r,l) to obtain rich multi-modal features where wr is the learnable

parameter. We derive the set of representations {F̂ (1) · · · F̂ (M)} from the final
fused multi-modal features F̂L. Comparing to the original features X(m), the
learned representations F̂ (m) involves more contextual information.

2.2 Prompt-guided Learning Network

To further learn modality-specific representation, we propose a Prompt-guided
Learning Network (PLN) to mine the discriminative regions of brain diseases.

Semantic Prompts: A set of semantic prompts is generated to provide a
better understanding of brain disease via LLM. To be specific, GPT-4 is utilized
to yield semantic information of related brain disease based on specific instruc-
tions, e.g., "significant hippocampal atrophy: AD subjects often show significant
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atrophy of the hippocampal region". This approach provides a level of semantic
guidance for lesion regions. Technically, the relevant concepts are expressed as,

Is = {I1, I2 · · · IC} = GPT-4{Class1,Class2 · · ·ClassC}, (3)

where Class refers to the name of the disease category and C denotes the number
of category. Next, the frozen text encoder CLIP is employed on concept prompts
Is to obtain semantic features Xs ∈ RC×D of all categories.

Cross-Attention Module: We introduce the Cross-Attention Module (CAM)
to boost interactive learning among different modalities [32]. Specifically, we first
transform F̂ (m) into input query Q(m) = (q

(m)
1 · · · q(m)

N ), key K(m) = (k
(m)
1 · · · k(m)

N )

and value V (m) = (v
(m)
1 · · · v(m)

N ) respectively by using three different linear pro-
jections where m = 1 · · ·M and N is the number of subjects. Then, the features
of each modality can be enhanced by aggregating the message from other modal-
ities. This process can be achieved as follows,

T(m,n)
i =

exp[(q
(m)
i )T k

(n)
i /τ ]∑M

n=1 exp[(q
(m)
i )T k

(n)
i /τ ]

, v̂
(m)
i =

M∑
n=1

T
(m,n)
i v

(n)
i + αv

(n)
i , (4)

where Ti represents cross-modal affinity matrix for the i-th subject, and τ is the
scaling factor. α > 0 denotes the weight parameter to balance the two terms.

Prompt-guided Embedding Network (PEN): It aims to guide semantic
prompts to obtain the discriminant local cues of each modality and then embed
them into global features to highlight the actual lesion regions. Specifically, we
perform the different linear projections on the v̂

(m)
i to obtain the global features

v̂
(m)
i,g and local features v̂(m)

i,p for the m-th modality. Let V̂ (m)
g = {v̂(m)

1,g · · · v̂(m)
N,g} ∈

RN×d and V̂
(m)
p = {v̂(m)

1,p · · · v̂(m)
N,p} ∈ RN×P×d represent global features and local

features of all subjects where P and d are the number of part tokens and the
dimension of these tokens, respectively. To explore fine-grained local information,
we design the Semantic Prompt Guidance Scheme (SPGS), which first applies
semantic cues to the local information to compute similarity as follows,

S(m) = Sim{Wpro(Xs), V̂
(m)
p }, S(m) ∈ RN×P×C , (5)

where Wpro denotes the projection matrix. And then this scheme selects the
semantic similarity with the highest value as Ŝ(m) = max{S(m)} ∈ RN×P , help-
ing to adjust the weight of the corresponding local information and identifying
meaningful lesion regions. Note that we do not know the category of subjects, so
we can infer the important lesion areas according to the semantic similarity of
the local information to the semantic cue. Thus, the Ŝ(m) is dotted into local in-
formation V̂

(m)
p to highlight discriminative regions as Ṽ

(m)
p , enabling the model

to focus on relevant lesion regions while suppressing noise from irrelevant areas.
Finally, to propagate local information and refine discriminative features, we
propose a Relation-aware Embedding Strategy (RES). This strategy integrates
fine-grained local information into global contexts by modeling their relation-
ships, deriving the unified representation as follows,

Z(m) = Softmax(Ṽ (m)
p V̂ (m)

g )T Ṽ (m)
p + V̂ (m)

g , Z = Concat[Z(1) · · ·Z(M)]. (6)



6 X. Wan et al.

We then feed Z to a classifier to obtain the predicted labels Ŷ . We train the
whole network in an end-to-end way. The overall loss involves both multi-relation
graph learning loss and label prediction loss, which is formulated as follows,

L = λLG(A) + ηLLabel(Y, Ŷ ), (7)

where LG is defined in Eq.(1) and LLabel denotes the cross-entropy loss function.
Y is the corresponding ground-truth labels. λ and η are set to 1 in experiments.

3 EXPERIMENTAL RESULTS AND ANALYSIS

3.1 Dataset and Implementation Detail

Dataset. TADPOLE: TADPOLE is a subset of the Alzheimer’s Disease Neu-
roimaging Initiative (ADNI) dataset [19, 20], which contains multi-modal data
from patients. Following the setting in [32], we select 598 subjects with six modal-
ities. ABIDE: Autism Brain Imaging Data Exchange (ABIDE) [21] is a public
dataset for autism research. Following the classical setting in [4], we preprocess
this dataset to obtain 871 subjects with four modalities [4, 7]. Table 1 summa-
rizes the subject statistics for both datasets. MMSE and MoCA are two widely
used cognitive function screening scales in clinical diagnosis.
Implementation Detail. Our model is trained on an NVIDIA GeForce RTX
3090 GPU using PyTorch 1.12.0. On TADPOLE, the dropout rate is 0, the
learning rate is 0.012, the number of hidden layers is 10, and the encoding layer
is 2. On ABIDE, the dropout rate is 0.75, the learning rate is 0.0023, the number
of hidden layers is 10, and the encoding layer is 4. For both datasets, the number
of attention heads is 4, and the weight of original multi-modal features α = 1. We
use 10-fold cross-validation for robust evaluation, with Accuracy (ACC), Area
Under the Curve (AUC), Sensitivity (SEN), and Specificity (SPE) metrics.

Table 1. Statistics of subjects on two datasets. F/M denotes Female/Male.

TADPOLE Gender(F/M) Age MMSE MoCA
NC 114/95 72.81±5.96 29.13±1.11 25.93±2.45
MCI 144/171 70.87±7.19 28.14±1.70 23.53±3.10
AD 30/44 73.29±7.97 22.82±2.93 16.86±5.06

ABIDE Gender(F/M) Age Open/Closed-Eye
NC 90/378 16.84±7.23 321/147
ASD 54/349 17.07±7.95 288/115

3.2 Comparison Results

We compare our model with 11 state-of-the-art methods of disease prediction.
Specifically, we apply MLP [26], which shows potential relative to other com-
plex models in predicting disease. Besides, InceptionGCN [13], PopGCN [23],
EV-GCN [8], LGL [3], MMGL [32], and MAFGN [30] are single-graph-based
methods; LSTMGCN [12], Multi-GCN [14], MMKGL [18] and MGDR [9] are
multiple-graphs-based methods. Compared to these methods, we propose the
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Table 2. Comparisons with state-of-the-art methods.

TADPOLE ABIDE
METHOD ACC(%) AUC(%) ACC(%) AUC(%) SEN(%) SPE(%)

InceptionGCN [13] 77.42±1.53 81.58±1.31 72.69±2.37 72.81±1.94 80.29±5.10 74.41±6.22
MLP [26] 82.28±4.39 83.13±3.20 75.22±8.06 79.30±7.95 77.35±9.00 75.24±10.9

PopGCN [23] 82.37±5.10 80.71±4.21 69.80±3.35 70.32±3.90 73.35±7.74 80.27±6.48
LSTMGCN [12] 83.40±4.11 82.42±7.97 74.92±7.74 74.71±7.92 78.57±11.6 78.87±7.79
Multi-GCN [14] 83.50±4.91 89.34±5.38 69.24±5.90 70.04±4.22 70.93±4.68 74.33±6.07

EV-GCN [8] 88.51±2.34 89.97±2.15 85.90±4.47 84.72±4.27 88.23±7.18 79.90±7.37
LGL [3] 91.37±2.12 93.96±1.45 86.40±1.63 85.88±1.75 86.31±4.52 88.42±3.04

MMGL [32] 92.31±1.73 93.91±2.10 89.77±2.72 89.81±2.56 90.32±4.21 89.30±6.04
MAFGN [30] 92.80±0.92 93.32±2.10 – – – –
MMKGL [18] – – 91.08±0.59 91.01±0.63 91.97±0.64 90.05±1.37
MGDR [9] 93.64±3.90 94.89±2.96 91.39±2.00 91.25±2.07 89.33±4.55 93.16±3.27

SPromptGL 94.81±2.95 95.59±2.57 92.30±2.58 92.22±2.57 91.08±3.53 93.36±3.67

Fig. 2. Ablation study results on both datasets. (a) Baseline, (b) Baseline + GFR, (c)
Baseline + GFR + RES, (d) Baseline + GFR + PEN (RES + SPGS).

SPromptGL approach, which captures discriminative regions across modalities
while enhancing their interaction and fusion. These results are presented in TA-
BLE 2. The proposed method achieves superior performance, with ACC and
AUC improvements of 1.17% and 0.7% on TADPOLE, and consistently outper-
forms the second-best on ABIDE. These results demonstrate the importance of
modal-specific discriminative regions for brain disease prediction.

3.3 Model Analysis

Ablation Study: We construct variants of our method to validate the effec-
tiveness of the proposed modules on two datasets. To be specific, our baseline
model only utilizes the multi-modal features from the Cross-Attention Module
(CAM) as shown in Fig. 2 (a). (b) We add GFR to learn the rich feature repre-
sentation instead of directly obtaining the feature representation through CMA.
Experimental results show that GFR improves all metrics by approximately 4%
on both datasets, demonstrating its ability to effectively capture cross-modal
relationships. (c) We integrate RES into our method to embed fine-grained lo-
cal information into a global context, enabling local message propagation. This
outperforms using only GFR, indicating that the features learned are more effec-
tive for disease prediction. (d) We introduce SPGS into RES to construct PEN,
which utilizes semantic cues to enhance meaningful lesion regions and reduce the
interference of non-lesion areas. This leads to consistent improvements on both
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Fig. 3. ACC and AUC are obtained for each modality with/without PEN. The green
color shows the increased value of each modality with PEN and M* is the *-th modality.

Fig. 4. t-SNE visualization of the modality-specific features on TADPOLE.

datasets. Therefore, these results validate that the proposed components play
positive roles in enabling better excavation features from different modalities.

To further verify the effectiveness of the proposed PEN, we conduct an in-
depth modal ablation analysis. These results show that the performance of each
modality is significantly improved after using PEN, as shown in Fig. 3. This fully
proves that our method can effectively extract discriminative modal-specific fea-
ture representations, enhancing the overall performance of multi-modal learning.
It is found that the performance of M4 on TADPOLE decreases slightly, which
may be attributed to its insufficient sensitivity to the discriminative regions.

2D t-SNE Visualization: To evaluate the effectiveness of our model, we
visualize the learned features by incrementally adding the proposed components,
as shown in Fig. 4 (a)-(d) on TADPOLE. This visualization has demonstrated
success in classifying subjects. Specifically, subjects diagnosed with AD are ac-
curately distinguished from those classified as NC or MCI, and MCI cases are
correctly classified without misclassification as AD or NC, ensuring high diag-
nostic accuracy in Fig. 4 (d). Moreover, it can be found that our results exhibit
larger inter-class distances and smaller intra-class distances, indicating that our
model is better at capturing differences between subjects of different classes.

4 Conclusion

In this paper, we propose to develop a novel prompt-guided graph learning net-
work for a multi-modal brain disease prediction problem. We first construct a
relation graph for each modality and then optimize it through a novel graph
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learning loss function. Then, a novel multi-layer graph convolutional neural net-
work is used to learn context-enriched feature representation for each subject.
After that, the generated semantic prompts are guided to the fine-grained local
information to seek out discriminative lesions. Finally, to achieve local informa-
tion propagation and refine discriminative features, we embed the above fine-
grained local information into global contexts by considering their relationship
to highlight relevant regions. Experiments on two standard benchmark datasets
demonstrate that the proposed approach can achieve superior performance.
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