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Abstract. High-resolution (HR) magnetic resonance imaging (MRI) of-
fers exceptional visualization of human tissue but is often limited by
hardware constraints. While recent super-resolution (SR) methods lever-
aging learned codebooks have shown promise, they often overlook the rich
anatomical priors inherent in MRI data. To address this, we propose a
probabilistic prior-guided anatomical alignment for MRI super-resolution
(PGASR) method that incorporates anatomical knowledge into the SR
process. Specifically, we first introduce an anatomical-conditioned code-
book generation (ACG) module that generates rough anatomical struc-
ture maps by extracting the regions of interest from MRI slices. These
maps are used as anatomical conditions for the discrete codebook genera-
tion. Then, to better exploit information between MRI slices, we propose
a prior matching alignment (PMA) module that aligns the codebook
index matching probabilities between adjacent slices, as well as across
low-resolution (LR) and high-resolution (HR) domains, thereby reduc-
ing the loss of image details. We validate the effectiveness of the proposed
PGASR method with the public MRI dataset IXI. The experimental re-
sults demonstrate that PGASR outperforms state-of-the-art methods.

Keywords: Super Resolution · Magnetic Resonance Imaging · Prior-
Guided Codebook Alignment.

1 Introduction

Magnetic resonance imaging (MRI) [1–3] is widely utilized in clinical practice
for diagnosis and image-guided therapy due to its superior soft tissue contrast
and non-invasive nature. However, achieving high-resolution MRI is often con-
strained by acquisition time, magnetic field strength, and high costs. These lim-
itations compromise the texture and structural details essential for accurate di-
agnosis and quantitative analysis. Image super-resolution (SR) [4] has emerged
as a promising solution for addressing this problem, which aims to restore high-
resolution (HR) images from their degraded low-resolution (LR) observations.
Image super-resolution methods can be broadly categorized into: reconstruction-
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Fig. 1. The codebook activations in brain IXI dataset.

based methods [5], which solve ill-posed problems via regularization; learning-
based methods [6], leveraging deep learning models to learn mappings from low
to high-resolution images; and example-based methods [7], which utilize external
data to establish mappings of HR and LR images.

Recent advancements in codebook-based SR techniques [6, 8, 9] have intro-
duced innovative ways to model high-resolution textures by leveraging discrete
feature spaces derived from pre-trained codebooks. These methods [6, 8, 9] con-
strain the feature output to a latent discrete space to ensure the generated
textures are consistent with realistic image representations. However, current
approaches typically overlook the rich anatomical information inherent in MRI
data, which could serve as valuable priors for SR. MRI anatomical structures [10]
exhibit distinct contrasts and textures due to variations in tissue composition,
water content, and magnetic properties. Rough tissue segmentation in MRI can
provide crucial anatomical insights for image reconstruction. This motivates the
use of foundational segmentation models (e.g., segment anything model [11])
to generate segments as rough anatomical structure maps for MRI slices. By
conditioning the pretraining of the discrete latent space on anatomical priors,
we develop an anatomical-conditioned codebook that enhances SR by improving
texture and structure alignment with anatomical structures.

Moreover, existing methods [6, 8] typically quantize image features into dis-
crete latent representations independently, failing to capture the inherent inter-
slice correlations in volumetric MRI data. This lack of integration compromises
structural continuity, which is crucial for accurate MRI reconstruction. Addi-
tionally, degraded LR images often suffer from loss of detail textures, leading to
ambiguous feature distributions and inconsistent codebook mappings with HR
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Fig. 2. The framework of the proposed PGASR.

images. As shown in Fig. 1, the VQGAN [6] trained on HR images from IXI
dataset exhibits inconsistent codebook activation probabilities between HR im-
ages and their ×2/×4 LR counterparts, especially in the code of 10 to 19, where
corresponding activations are conspicuously absent. To minimize distortion in
the reconstructed images, the codebook index matching probabilities during LR
image quantization should ideally align closely with those of the HR images.

In this paper, we propose a probabilistic prior-guided anatomical alignment
for MRI super-resolution (PGASR) to address the aforementioned limitations
in SR. Specifically, we design an anatomical-conditioned codebook generation
(ACG) module, which utilizes the foundational segmentation models to pro-
duce rough anatomical structure maps. These maps are then used to guide the
generation of an anatomical-conditioned codebook, enabling the SR process to
incorporate anatomical knowledge effectively. Then, we propose a prior matching
alignment (PMA) module to enhance inter-slice feature consistency by aligning
information across adjacent slices. We further constrain the matching proba-
bilistic consistency in codebooks between HR and LR images, ensuring better
feature alignment for MRI SR.

2 Method

The framework of our proposed Probabilistic Prior-Guided Anatomical Align-
ment for MRI Super-Resolution (PGASR) is illustrated in Fig. 2. In the first
stage, we utilize a pre-trained SAM to extract anatomical structure maps by
segmenting regions of interest in MRI. Given a HR image ÎHR, we generate seg-
ments {si}ni=0 to derive its anatomical prior SHR. SHR is then used as conditions
to learn the discrete codebook Z, encoder Ê, decoder G, and discriminator D.
In the second stage, LR slices are first input into a randomly initialized shallow
feature extractor E. The generated features are then fed into a spatial cross-
attention module, which is optimized with the alignment losses Lalign_d and
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Lalign_s to ensure codebook index matching consistency between adjacent slices
and across the LR and HR domains. Finally, the quantized feature is recon-
structed by the fixed decoder G. During inference, we employ the same modules
as in the second stage, with all parameters fixed.

2.1 Anatomical-conditioned Codebook Generation

Anatomical Prior Extraction. Manual annotation of anatomical structures
in MRI slices is labor-intensive and clinically impractical. To address this chal-
lenge, we employ the Segment Anything Model (SAM) [11] to extract anatomical
priors in an unsupervised manner. Given a high-resolution MRI slice ÎHR, we
leverage the pre-trained SAM to generate a set of spatially coherent segments
{si}ni=1 that delineate critical brain regions, such as gray matter, white matter,
and cerebrospinal fluid. These segments are then aggregated via a summation
operation across the spatial dimension, followed by normalization to [0, 1]. The
resulting composite segmentation map, denoted as SHR, serves as a spatially
grounded anatomical prior (Fig. 2, top-left). This automated process bypasses
manual annotation while retaining structural fidelity for downstream tasks.

Conditioned Codebook Generation. To learn a discrete codebook condi-
tioned on extracted anatomical priors, we employ a vqgan-like architecture with
an encoder Ê, a learnable codebook Z, and a decoder G. For a given HR image
ÎHR, we concatenate it with its extracted anatomical prior SHR to form the
composite input IHR, which is then fed into encoder Ê to derive feature embed-
dings ẑ = E(IHR) ∈ RH×W×nz . We predict the codebook index k for each entry
ẑij ∈ Rnz in ẑ by retrieving the nearest entries in codebook Z ∈ RN×nz , where
N is codebook size and nz is the dimension of codes. The quantized discrete
representation of input ẑ is formulated as,

zq =

(
argmin
zk∈Z

∥ẑij − zk∥
)

∈ RH×W×nz (1)

where zk is the selected codebook entry of ẑij . The quantized features zq are
finally decoded by the decoder G to reconstruct the HR image as

ĨHR = G(zq) (2)

Unlike the original VQGAN encoder structure, we modify the architecture
of Ê to a resnet-transformer architecture to reduce learning complexity. Specif-
ically, we first extract the visual features using resnet blocks and flatten them
to serve as input for the transformer block. To better capture the spatial and
channel relationships within the MRI slice, we replace the standard transformer
block with the DAT block [12]. The encoder E, codebook Z, and decoder G are
adversarially trained with a discriminator D. In the first stage, we optimize the
model using L1 loss, perceptual loss Lper and adversarial loss Ladv. The total
loss function is defined as,

Lstage1 = L1 + Lper + Ladv + ∥sg[E(x)]− zq∥22 + β ∥sg [zq]− E(x)∥22 (3)
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where sg[·] denotes the stop-gradient operation, and the ∥sg [zq]− E(x)∥22 rep-
resents the commitment loss with a weighting factor β.

2.2 Prior Matching Alignment

To address the limitations of common codebook-based methods that indepen-
dently match input visual features with learned codebook entries, we propose two
constraints. First, we enforce inter-slice consistency in codebook index matching
by constraining matching across adjacent slices. Second, to address the discrep-
ancy in codebook index matching probabilistic between HR and LR domains (as
evidenced in Fig. 1), we enforce consistency in the matching process across HR
and LR slices.

Given an input LR MRI slice ItLR (which includes the original LR image and
its corresponding anatomical prior), we denote its high-resolution counterpart as
ItHR. Its adjacent slices are denoted as It−1

LR and It+1
LR . We first feed these three

slices into a shallow feature extractor E (identical to the network structure of Ê
but trained independently), which produces feature embeddings [ẑt−1, ẑt, ẑt+1] ∈
RH×W×nz . At this stage, the codebook Z remains fixed. To exploit the inher-
ent texture similarity among adjacent MRI slices, we introduce a spatial cross-
attention block (SCAB) to enhance the feature embeddings. As illustrated in Fig.
3, SCAB is designed based on the dual spatial transformer block (DSTB) [12],

Fig. 3. Spatial cross
attention block.

which performs cross-attention by using ẑt as the query,
and ẑt−1 and ẑt+1 as the key and value, respectively. The
features refined by SCAB are then processed for quantiza-
tion using the codebook Z. For clarity, we denote the re-
fined features from SCAB as [ẑt−1, ẑt, ẑt+1]. Since adjacent
slices exhibit similar textures, they are expected to have
similar representations in the codebook space. Denote the
distances between the refined features and all codebook
entries as [at−1, at, at+1], we regard the predicted probabil-
ities for codebook indices as distributions over the learned
codebook and design the spatial alignment loss as,

Lalign_s = DKL(a
t−1, at) +DKL(a

t, at+1) (4)

where DKL(·, ·) is the KL divergencr. Lalign_s leverages spatial dependencies
between adjacent slices to enforce consistency in codebook matching, improving
feature alignment across adjacent MRI slices.

We further introduce Lalign_d to mitigate the discrepancy in the codebook
index matching probabilistic between HR and LR domains. Specifically, we pass
ItHR through the learned encoder Ê (see Sec. 2.1) and predict the codebook
index probabilities as atHR. The domain alignment loss Lalign_d is then denoted
as Lalign_d = DKL(a

t, atHR). While Lalign_s improves inter-slice information
alignment, Lalign_d ensures consistent codebook index matching between HR
and LR domains. The overall loss for the second stage is given by,

Lstage2 = L1 + α1Lalign_s + α2Lalign_d (5)
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where α1 and α2 are hyperparameters. Note that the Decoder G and codebook
Z remain fixed during this stage.

3 Experiments

3.1 Experimental setup

Dataset. We evaluate our method on T2-weighted MRI brain volumes from the
IXI dataset, using 300 subjects for training and 176 subjects for testing. Each
volume contains axial slices of size 256× 256 pixels (1 mm isotropic resolution).
To mitigate noise and intensity inhomogeneity in frontal and posterior regions,
we exclude the first and last few slices of each volume, retaining 80 standardized
slices per subject. HR slices are normalized to zero-mean and unit variance.
To generate low-resolution (LR) counterparts, we degrade HR images by first
applying a general anisotropic Gaussian blur kernel, followed by additive white
Gaussian noise, and finally bicubically downsampling the degraded image at
scale factors of ×2 and ×4.

Evaluation Metrics. We utilized the peak signal-to-noise ratio (PSNR), struc-
tural similarity index (SSIM), and learned perceptual image patch similarity
(LPIPS) commonly used in super-resolution to evaluate the reconstructed im-
age quality. The main experimental results are averaged over 3 runs.

Implementation Detail. Our proposed framework is implemented using the
PyTorch library. In the first stage, we optimize the encoder Ê, codebook Z, de-
coder G, and discriminator D with an initial learning rate of 0.0001, which is
halved every 10 epochs. The batch size for this stage is set to 16. The hyperpa-
rameter β in Lstage2 is set to 0.25 and the number of codes in codebooks is set
to 256 for all experiments. In the second stage, we optimize the feature extrac-
tor E and spatial cross- attention block with an initial learning rate of 0.0003
and a batch size of 8. The loss weights α1 and α2 in Lstage2 are empirically set
to 0.1. Architecturally, both encoder Ê and E adopt a 4-level design: the first
two blocks use ResNet for local feature extraction, while the latter two employ
the DAT block for adaptive interaction in spatial and channel. The decoder G
consists of four sequential DAT blocks. All the compared methods are retrained
using their default parameter settings for fair comparison.

3.2 Experiment results

To validate the effectiveness of the proposed PGASR, we conduct experiments
on IXI dataset with scale factors of ×2 and ×4. We compared our approach
with state-of-the-art SR methods for common images [13, 14, 12], as well as with
methods specifically designed for MRI SR [2, 3]. All methods follow the original
experimental settings to ensure a fair comparison of performance. The compar-
ison results are shown in Table 1.
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Table 1. Quantitative comparison results for image SR on brain IXI dataset. Best and
second best results are highlighted and underlined

method ×2 ×4
PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓

Bicubic 28.5198 0.7334 0.0892 25.9486 0.7268 0.1032
T2Net [2] 32.8744 0.9311 0.0749 28.6592 0.8549 0.0987
MINet [3] 33.7914 0.9426 0.0758 28.8441 0.8677 0.0946
ART [13] 36.2201 0.9518 0.0781 30.1816 0.8800 0.1155
CAT [14] 36.3455 0.9537 0.0682 30.4928 0.8891 0.0970
DAT [12] 36.4619 0.9598 0.0642 30.4429 0.8817 0.1078

Ours 36.7642 0.9706 0.0487 30.6844 0.8972 0.0924

Table 2. Ablation study. Best results are highlighted

Exp. ACG Lalign_d Lalign_s SCAB ×2 ×4
PSNR SSIM LPIPS PSNR SSIM LPIPS

0 - - - - 34.487 0.9527 0.0613 28.955 0.8717 0.0953
1 ✓ - - - 35.942 0.9608 0.0575 29.641 0.8794 0.0948
2 ✓ ✓ - - 36.428 0.9661 0.0547 29.726 0.8869 0.0927
3 ✓ - ✓ - 36.254 0.9648 0.0563 29.662 0.8834 0.0941
4 ✓ ✓ ✓ - 36.597 0.9679 0.0504 30.437 0.8945 0.0931

Ours ✓ ✓ ✓ ✓ 36.764 0.9706 0.0487 30.852 0.8972 0.0924

The evaluation result on IXI. As demonstrated by the IXI experiment results
in Table 1, our method achieves superior performance compared to existing
techniques across both fidelity (PSNR/SSIM) and perceptual quality (LPIPS)
metrics. For the ×2 super-resolution task, our approach attains state-of-the-
art results with PSNR and SSIM values of 36.7642 dB and 0.9706, respectively,
outperforming the previous best method (6th row) by 0.3023 (PSNR) and 0.0108
(SSIM). Notably, it achieves the lowest LPIPS score of 0.0487, demonstrating
a 26.7% improvement in perceptual quality over the closest competitor (DAT:
0.0642). For the ×4 task, our method maintains its superiority with 30.6844
dB in PSNR and 0.8972 in SSIM, outperforming the second-best approach by
0.1916 (PSNR) and 0.0081 (SSIM), while consistently achieving lower LPIPS
scores. These results validate the capability of our method to balance fidelity and
perceptual realism, highlighting its robustness across varying degradation levels.
The consistent improvements underscore the practical utility of our framework
for MRI SR applications.

Ablation study. We conduct an ablation study to further investigate the va-
lidity of each component in PGASR. The results are shown in Table. 2, "ACG"
refers to the use of ACG in the first stage. "Lalign_d" and "Lalign_s" denote the
incorporation of the alignment loss in Lstage2. "SCAB" stands for the use of the
Spatial Cross Attention Block. The results of the ablation study show that the
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Table 3. KL divergence of codebook activations between HR and LR

Setting x2 x4
w/o Lalign_d 0.0597 0.0861
with Lalignd 0.0413 0.0530

Fig. 4. Reconstructed LR images and their corresponding error map.

Lalign_d contributes the most to final performance in all settings. Combining
both alignment losses (Exp. 4) results in even greater improvements, underscor-
ing their complementary effects. The fundamental reason for this performance
gain is that Lalign_d constrains the codebook matching process, ensuring match-
ing consistency between LR and HR domains. This reduces reconstruction errors
caused by significant discrepancies in matching due to degradation in the LR
images. Additionally, the introduction of SAM-generated priors and the spatial
cross-attention block further enhance the final performance. This demonstrates
the importance of incorporating anatomical priors and focusing on inter-slice
information for MRI super-resolution tasks. Overall, each component plays a
crucial role in enhancing model capability, with the alignment losses providing
the most significant improvements.

To further investigate the impact of Lalign_d on codebook matching, we com-
pute the activations of codebook in test set, considering both HR images and
their corresponding 2× and 4× downsampled counterparts. Then, we compare
the activation distributions with and without Lalign_d. Kullback-Leibler (KL)
divergence is employed to quantitatively assess the discrepancy between code-
book activations in the HR and LR domains. The results, summarized in Table 3
show that introducing Lalign_d substantially reduces the divergence, indicating
improved matching consistency and validating the effectiveness of our approach.
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Qualitative study. We visualize the error map of the reconstructed low-
resolution images and their corresponding error maps in Fig. 4 to qualitatively
verify the effectiveness of our proposed PGASR. We compare our proposed
method with the best-performing methods in this study. From the results shown
in the figure, it is evident that the reconstruction error of our proposed method
is significantly smaller than that of the other two representative methods. This
demonstrates the superior performance of PGASR in accurately reconstruct-
ing high-quality images with smaller errors. Moreover, the generated anatomical
prior shown in Fig. 2 indicates that our method is capable of producing rea-
sonable coarse anatomical structure maps that delineate different MRI regions
without requiring additional manual annotation, highlighting the strength and
practical utility of our approach.

4 Conclusion

This work addresses the challenge of MRI SR by generating and incorporating
anatomical priors. The proposed PGASR framework contains an Anatomical-
Conditioned Codebook Generation (ACG) module and a Prior Matching Align-
ment (PMA) module. The ACG module generates anatomical priors, which are
used as conditions to guide codebook generation and preserve structural infor-
mation. PMA module is designed to enforce probabilistic consistency in code-
book index matching across domains and slices, thereby ensuring precise recon-
struction of degraded LR images. Experimental validation on the public brain
MRI dataset demonstrates the superiority of the proposed PGASR over exist-
ing methods, achieving state-of-the-art performance in both fidelity metrics and
perceptual quality.
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