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Abstract. In medical imaging, domain adaptation (DA) enables the
transfer of knowledge from models trained on labeled source domains to
unlabeled target domains that exhibit distribution shifts. In real world,
medical images often contain multiple disease-related labels. However,
existing multi-label domain adaptation (MLDA) algorithms face two pri-
mary challenges in addressing multi-label domain shifts: inadequate cap-
ture of disease features and insufficient integration of information from
each individual class. To tackle these challenges, we propose a novel ap-
proach, Wasserstein Adversarial Learning with Class-Level Alignment,
designed to align feature distributions for medical MLDA. By utilizing
adversarial learning guided by Wasserstein distance, our approach cap-
tures more complete domain-invariant representations of lesion region.
Additionally, we introduce a class-level alignment loss that leverages in-
dividual class information to further reduce domain discrepancies. Exten-
sive experiments on real medical datasets demonstrate that our method
significantly enhances medical multi-label domain adaptation and out-
performs existing state-of-the-art algorithms.

Keywords: Medical imaging domain adaptation · Multi-label · Wasser-
stein adversarial learning · Class-level alignment.

1 Introduction

Nowadays, deep learning has demonstrated its remarkable performance in clas-
sification and detection for medical imaging, which attracts wide attention in
research community [2,24,28]. However, medical images acquired from different
hospitals and healthy centers often exhibit distribution shifts due to variations
in scanning parameters set by devices [6]. As illustrated in Figure 1, distribution
shifts can stem from differences in the orientation of the scans, for example,
between anterior-posterior (AP), posterior-anterior (PA), and lateral scans, in
chest X-rays [10]. In addition, the costs associated with annotating medical im-
ages and training multiple models for diverse datasets are relatively expensive
[13]. These factors make it challenging for a well-trained deep learning model to
achieve similarly high performance on other medical datasets with limited anno-
tations [26]. To overcome this issue, the knowledge acquired from the annotated
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source domain needs to be transferred to the target domain, which is known as
domain adaptation (DA) [13].

Most deep DA methods mainly align the domain distributions through ad-
versarial processes, which reflect features into a similar space across domains
[4,11,15], or minimizing the discrepancy of feature distributions [13,16]. These
DA methods are mainly applied to multi-class classification, where each data
sample is associated with a single label. However, in real-world medical scenar-
ios, a single radiographic image may express information of multiple diseases
simultaneously, rather than just one disease. For example, in the X-ray image of
a patient, if Atelectasis is diagnosed, there is a significant probability that Effu-
sion and Infiltration are also present [25]. Furthermore, multi-label deep learning
models can significantly assist physicians in reducing the probability of missed
diagnoses by effectively capturing the co-occurrence patterns of multiple diseases
[23]. Obviously, multi-class DA models mainly focus on assigning a single label
among multiple labels to each sample, which limits their abilities to capture
co-occurrence of interrelated labels and to couple dependencies between multi
disease indicators. Thus, most existing multi-class DA algorithms are not well-
suited to perform optimally in the multi-label domain shift for medical imaging
[14].

For the aforementioned multi-label medical image classification, multi-label
domain adaptation (MLDA) [12] algorithms are crucial for effectively trans-
ferring the knowledge of multiple labels across domains. This topic has gradually
attracted the interest of researchers in fields such as medical imaging [14], remote
sensing [9] and bearing compound fault diagnosis [3]. Similar to DA methods,
many studies [12,14,20] still employ a domain discriminator to adversarially learn
the projection of features in a shared space. Except for domain discriminator, ad-
versarial critic with coupling classification and discrimination tasks [19], can also
help mitigate the effects of domain shifts. Furthermore, reducing the discrepancy
of feature distributions remains a common technique to obtain domain-invariant
features in MLDA, which includes multiple kernel maximum mean discrepancy
[3] and cosine similarity [9].

Existing MLDA methods rarely incorporate the information specific to med-
ical image to refine alignment strategies. In addition, these algorithms primarily
focus on aligning feature spaces, similar to multi-class DA, which treat each do-
main as a whole. Therefore, these approaches fail to fully exploit individual label
information in the multi-label setting to perform more granular alignment.

To address the above challenges for MLDA in medical imaging, we propose
a novel approach named as Wasserstein Adversarial Learning with Class-
Level Alignment (WAL-CLA). This approach leverages the adversarial learn-
ing guided by the Wasserstein distance [21] to align the feature distributions. The
Wasserstein distance helps deep learning models extract the domain-invariant
representations more completely [27] and locate pathological organs more ac-
curately [7] across medical imaging domains. It is worth noting that, unlike
conventional DA, our Wasserstein adversarial learning framework is specifically
designed for multi-label tasks. To further integrate multi-label information, we
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Fig. 1. Illustration of medical images of two domains according to their scan orienta-
tions. Feature distributions of two domains are shown in the middle part of the figure.

introduce a class-level alignment strategy that explicitly aligns feature distribu-
tions at the label level. This ensures a more precise alignment across domains for
each class while preserving the intrinsic label dependencies in medical imaging.

Our contributions can be concluded as follows:

1. We introduce a Wasserstein adversarial learning process guided by the Wasser-
stein distance to enhance model’s ability of capturing more intrinsic charac-
teristics of medical imaging in MLDA.

2. We combine the class-level alignment loss that explicitly aligns feature dis-
tributions for each class to integrate individual label information better.

3. Extensive experiments conducted on real X-ray datasets validate the effec-
tiveness of our proposed method, demonstrating its advantages over several
state-of-the-art MLDA approaches.

2 Preliminaries

In this section, we briefly review the definitions of multi-label domain adaptation
and Wasserstein distance.

Multi-label Domain Adaptation. In multi-label domain adaptation, we de-
fine dataset from the source domain as DS = {(xs

i ,y
s
i )}

ns
i=1, where xs

i ∈ Rd is
the i-th medical instance and ys

i = {y1i , · · · , yCi } is the multi-label of total C
classes respecting to the instance (for any j-th class, yji ∈ {0, 1}). Similarly, we
can define the target domain DT = {xt

i}
nt
i=1, which consists of instances without

annotated labels provided by doctors. To transfer effective knowledge from the
source domain to the target domain, most existing MLDA models contain two
main components: a feature extractor E and a classifier C. The feature extractor
E is responsible for extracting the image features, i.e., ei = E(xi), while the
classifier F outputs C logits, pi = F(ei), to predict the multi-label output ŷi

over C classes, where ŷi = {ŷ1i , · · · , ŷCi }. By leveraging multi-label learning in
the source domain and unlabeled information from the target domain, the model
can effectively adapt to multi-label classification tasks in the target domain.
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Wasserstein Distance. Wasserstein distance [21] is a widely used measure for
quantifying the difference between two probability distributions by computing
the cost required to transport one distribution to another. In medical imag-
ing, this measure helps models capture a more comprehensive, domain-invariant
representation and facilitates more precise localization of lesion region across
multiple domains [7,27]. The definition of 1-Wasserstein distance between two
domains can be formalized as follows:

W (PS , PT ) = inf
τ∈Π(PS ,PT )

∫
∥xs − xt∥dτ(xs,xt), (1)

where PS and PT denote probability distributions of two domains, and ∥ · ∥
denotes the 1-norm Euclidean distance. Π(PS , PT ) represents the set of their all
joint distributions and τ(xs,xt) represents the “mass” that transports from xs

to xt. Since Equation (1) is inherently challenging to compute directly, we derive
a more tractable formulation based on Kantorovich-Rubinstein duality [22]:

W (PS , PT ) = sup
∥f∥Lip≤1

Exs∼PS

[
f(xs)

]
− Ext∼PT

[
(f(xt))

]
, (2)

where the supremum result is computed under the assumption that the learning
function f satisfies 1-Lipschitz smoothness condition.

3 Our method

In this section, we introduce our proposed Wasserstein adversarial learning with
class-level alignment in detail.

Wasserstein Adversarial Learning. To further improve computational ef-
ficiency in aligning feature distributions, we relax the learning function f in
Equation (2) to be K-Lipschitz, where the distance is scaled by a factor of K,
leading to K ·W (PS , PT ) [1]. Following the principles of Wasserstein generative
adversarial networks (WGAN) [1], we first define the adversarial learning loss
function based on Wasserstein distance as follows:

LW = Exs∼PS

[
f(xs)

]
− Ext∼PT

[
(f(xt))

]
. (3)

The above adversarial learning mainly focus on normal DA setting, which
has been widely applied in [17,18,27]. In MLDA scenario, it is crucial to account
for the multi-label nature of the task. Thus, we formalize the loss function for
Wasserstein adversarial learning as follows:

LW =
1

C

C∑
j=1

[ 1

ns

ns∑
i=1

F j
(
E(xs

i )
)
− 1

nt

nt∑
i=1

F j
(
E(xt

i)
)]
, (4)

where F j denotes the j-th logit value of the classifier output. We adapt the
adversarial loss to operate directly from classifier rather than a separate dis-
criminator in WGAN, which allows for a natural adaptation to the multi-label
setting during the adversarial learning process. Furthermore, it can decrease the
number of model parameters and save computational resources.
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Fig. 2. The architecture of proposed network combining with Wasserstein adversarial
learning and class-level alignment for medical multi-label domain adaptation. The black
arrows indicate the forward propagation of data through the network for prediction,
while the pink arrows represent the back-propagation of gradients. On the right part,
the labels depict the set of multi-label annotations for the entire dataset.

Class-Level Alignment. Except for intrinsic characteristics of medical image
captured by Wasserstein adversarial learning, it is also necessary to fully exploit
the information provided by multi-label annotations. To address this, we propose
a class-level alignment strategy incorporating multi-label information to further
mitigate discrepancy across domains for each individual class. First, we assign
pseudo labels ŷt

i = {1[F1
(
E(xt

i)
)
> γ], · · · ,1[FC

(
E(xt

i)
)
> γ]} to each target

domain data, where F j
(
E(xt

i)
)

denotes the j-th logit value of classifier output
and γ denotes the threshold for predicting pseudo label as 1. Then, combining
the labels of the source domain, the loss function for class-level alignment is
defined as follows:

LC = − log
( C∑

j=1

exp
( 1
T

xs
j · xt

j

∥xs
j∥2∥xt

j∥2
))

, (5)

where T is temperature hyperparameter. Here, xs
j =

1
ns

∑ns

i=1 1[y
j
i = 1]E(xs

i ) and
xt
j =

1
nt

∑nt

i=1 1[ŷ
j
i = 1]E(xt

i). The class-level loss refines the model parameters of
the feature extractor, ensuring a more direct alignment of the embedded feature
distributions for each individual class.

Framework. Combining with the Wasserstein adversarial learning and class-
level alignment, the general framework of our proposed WAL-CLA is shown in
Figure 2. In this framework, X-ray images from frontal and lateral scans are
treated as the source and target domains. These images are processed through
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the feature extractor E and the classifier F to generate multi-label predictions.
We employ ResNet34 [8] as the E and a two-layer linear network as the F . To sim-
plify the adversarial learning process, we apply a gradient reversal layer (GRL)
[4] between network E and F to invert the gradient during back-propagation for
LW . The total loss used for updating training parameters θE and θF of modules
E and F are summarized as follows:

θ∗F = argmin
θF

Lcls − λWLW ,

θ∗E = argmin
θE

Lcls + λWLW + λCLC .
(6)

Here, Lcls represents the binary cross-entropy loss of the source domain samples,
which is commonly used for multi-label classification tasks:

Lcls = − 1

ns

ns∑
i=1

[ 1
C

C∑
j=1

yji ·log
(
F j

(
E(xs

i )
))

+(1−yji )·log
(
1−F j

(
E(xs

i )
))]

. (7)

4 Experiments

Dataset. The proposed method is evaluated on two real X-ray datasets of chest,
ChestX-ray14 [25] and CheXpert [10]. ChestX-ray14 contains 112,120 X-ray im-
ages from 30,805 unique patients with 14 disease labels, while CheXpert con-
tains 224,316 chest radiographs from 65,240 patients with 14 categories of labels.
Given the inconsistency in the majority of labels between these two datasets, we
partition them based on their respective scanning parameters, defining corre-
sponding source and target domains. Specifically, for ChestX-ray14, we separate
the dataset into the posterior-anterior (PA) domain and anterior-posterior (AP)
domain based on different scan orientations. Additionally, we define the Male
(M) and Female (F) domains based on patient gender. With different views of
the chest in contrast to ChestX-ray14, we split CheXpert dataset into frontal
radiographs (Fron) and lateral radiographs (Lat) domain. Similarly, we also cre-
ate Male (M) and Female (F) domains for CheXpert based on patient gender.
This partitioning strategy allows us to examine the effects of domain shifts due
to both scan orientations and demographic factors for both datasets.

Baselines. We compare our proposed WAL-CLA with several existing popu-
lar approaches. (1) Source: the fundamental multi-label classification ResNet34
model trained exclusively on the source domain. (2) DANN [4]: a multi-class
DA approach which leverage adversarial learning to align distributions by dis-
criminator. (3)GAN-C [14]: a generative adversarial network [5] based method
combined with label predicted conditions. (4) MK-MMD [3]: it decreases the
discrepancy of distributions by minimizing the measure of multiple kernel max-
imum mean discrepancy. (5) DDA-MLIC [19]: it utilizes adversarial critic to
match two domains by Gaussian Mixture Model, instead of discriminator. (6)
Target: the baseline model being same with the network architecture of “Source”
and trained on target domain directly.
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Implementation details. Our proposed WAL-CLA was implemented by Py-
torch and trained on Nvidia 4090 GPU. We employed ResNet34 pretrained on
ImageNet as the feature extractor backbone. We set batch size as 64, learning
rate as 0.01 and trained the model with 20000 steps. For hyperparamters, we
set λW = 0.1, λC = 0.05, τ = 0.8 and T = 0.5 . For MLDA, we evaluated
models performance on target domain by 3 metrics: the predicted multiple la-
bel accuracy (ACC), overall average area under the ROC curve (oAUC), and
class average area under the ROC curve (cAUC). Higher values of these metrics
indicate better model performance.

Results. Table 1 demonstrates the compared experimental results for ChestX-
ray14 dataset. We designate AP and PA as one domain pair for mutual adapta-
tion, while constitute M and F as another domain pair for mutual adaptation.
For example, PA→AP represents that source domain is PA and target domain is
AP. In all domain adaptation cases, it is evident that our proposed method out-
performs other baselines across all evaluation metrics. Similarly, Table 2 shows
the evaluation results on the CheXpert dataset, where we also employ 4 domain
adaptation cases. The reason of the method working less well on the Fron→Lat
and the Lat→Fron is mainly due to the severe data imbalance between two do-
mains when they are split by view, where the Fron domain contains over 190k
samples and the Lat domain includes only about 30k samples. This large im-
balance poses a significant challenge to the Wasserstein adversarial alignment,
which relies on sufficient and balanced data distributions for effective alignment.
In contrast, the other domain adaptation settings in our experiments involve
source and target domains with more balanced data volumes, allowing for more
stable and reliable feature alignment and leading to better adaptation perfor-
mance. With the exception of the Fron→Lat, our algorithm consistently achieves
superior performance across almost all other domain adaptation settings, sur-
passing existing methods.

In Tables 1 and 2, ResNet34 trained on the source domain (“Source”) per-
forms significantly worse when transferred directly to the target domain without
any adjustment, compared to the ResNet34 trained directly on target domain
(“Target”). This finding further confirms that the adopted domain partitioning
strategy induces domain shift in the dataset, thereby providing a valid testbed
for multi-label domain adaptation.
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Fig. 3. The oAUC and cAUC results on ChestX-ray14 dataset with the threshold γ
varying from 0.3 to 0.9 and the temperature T varying from 0.05 to 10, respectively.



8 Wenjie Liu et al.

Table 1. Experimental results for ChestX-ray14 dataset, where we evaluate on 4 do-
main adaptation cases. Except for “Target”, the best results of rests are underlined.

PA→AP AP→PA M→ F F→ M
ACC oAUC cAUC ACC oAUC cAUC ACC oAUC cAUC ACC oAUC cAUC

Source 86.55 0.743 0.645 86.86 0.716 0.643 89.35 0.822 0.717 89.29 0.826 0.726
DANN 88.24 0.782 0.681 88.68 0.781 0.673 89.61 0.836 0.754 89.11 0.828 0.741
GAN-C 88.35 0.795 0.690 88.66 0.780 0.673 89.47 0.834 0.754 89.15 0.826 0.738

MK-MMD 87.92 0.772 0.620 88.77 0.765 0.631 88.99 0.804 0.696 88.88 0.808 0.695
DDA-MLIC 80.16 0.771 0.702 78.12 0.775 0.683 79.83 0.830 0.761 81.26 0.822 0.751
WAL-CLA 88.68 0.812 0.706 89.47 0.798 0.685 89.72 0.838 0.761 89.50 0.838 0.752

Target 90.87 0.909 0.866 93.57 0.948 0.931 90.96 0.890 0.842 90.53 0.880 0.816

Table 2. Experimental results for CheXpert dataset, where we evaluate on 4 domain
adaptation cases. Except for “Target”, the best results of rests are underlined.

Fron→Lat Lat→Fron M→ F F→ M
ACC oAUC cAUC ACC oAUC cAUC ACC oAUC cAUC ACC oAUC cAUC

Source 87.46 0.736 0.615 82.17 0.683 0.551 87.68 0.881 0.749 87.73 0.875 0.743
DANN 88.21 0.771 0.649 84.14 0.762 0.627 87.98 0.883 0.751 87.67 0.877 0.748
GAN-C 88.10 0.768 0.658 83.26 0.775 0.634 88.01 0.884 0.754 87.75 0.878 0.750

MK-MMD 86.84 0.744 0.605 83.54 0.804 0.601 86.43 0.858 0.698 86.47 0.853 0.695
DDA-MLIC 62.59 0.691 0.592 72.38 0.687 0.566 72.31 0.879 0.774 68.70 0.814 0.691
WAL-CLA 88.19 0.755 0.630 84.27 0.815 0.628 88.32 0.890 0.769 88.07 0.884 0.766

Target 93.83 0.954 0.935 89.15 0.916 0.830 89.69 0.916 0.832 89.03 0.912 0.837

Ablation Studies. We conduct ablation studies to analyze the contribution of
each proposed loss term in the PA→AP and AP→ PA settings on the ChestX-
ray14 dataset. As shown in Table 3, each individual loss component contributes
to a performance improvement, further validating the effectiveness and ratio-
nality of each proposed loss term. When all loss items are combined, the model
achieves the best overall performance.

Effectiveness of Hyperparameters. Figure 3 illustrates the effect of varying
threshold values γ and temperature T on the oACU and cAUC performance
metrics for WAL-CLA on the ChestX-ray14 dataset. It is evident that the per-
formance of our WAL-CLA achieves its near-optimal levels when the threshold
is set as 0.8 and the temperature is approximately 0.5.

5 Conclusion

In this paper, we propose a novel Wasserstein adversarial learning with class-
level alignment for medical multi-label domain adaptation. On real-world medi-
cal imaging datasets, our proposed method demonstrates superior performance
compared to existing algorithms. In the future, we aim to extend our approach
to multi-modal medical imaging by more deeply integrating modality-specific
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Table 3. Effectiveness of each individual component of WAL-CLA on ChestX-ray14.

LW LC
PA→AP AP→PA

ACC oAUC cAUC ACC oAUC cAUC
86.55 0.743 0.645 86.86 0.716 0.643

✓ 88.46 0.803 0.697 89.09 0.788 0.679
✓ 88.36 0.803 0.693 89.22 0.794 0.683

✓ ✓ 88.68 0.812 0.706 89.47 0.798 0.685

characteristics. This will enhance multi-label domain adaptation in medical ap-
plications, ultimately aiding clinicians in reducing misdiagnosis rates.
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