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Abstract. Tissue-level semantic segmentation is crucial in digital pathol-
ogy workflow. However, since dense pixel-level annotation of gigapixel
pathology images is expensive and time-consuming, Weakly Supervised
Semantic Segmentation (WSSS) methods have gradually attracted at-
tention. The WSSS methods using image-level labels usually rely on
Class Activation Map to generate pseudo labels, which have difficulty
capturing complete object regions and may incorrectly activate regions
with weak semantic relevance of pathology images. In this work, we pro-
pose SIA-WSSS, a weakly supervised semantic segmentation model for
pathology images that synchronous inhibition and activation. Specifi-
cally, we first extract pathology images class and patch tokens using
a VisionTransformer (ViT) and construct a Regularized Focus Mech-
anism (RFM). The RFM implicitly regularizes class-patch interactions
through graph learning, ensuring that class tokens can dynamically com-
press patch information and inhibit irrelevant backgrounds. Next, we
introduce a Discriminative Activation Module to contrast the class to-
kens of fine-grained regions and global objects to capture the unique
features of each class and activate the foreground region. Moreover, we
design a Regional Self-modulation Module synchronizing each region’s
activation and inhibition information to generate segmentation results
with finer structures. Experimental results on the LUAD-HistoSeg and
BCSS-WSSS datasets demonstrate that the proposed SIA-WSSS signifi-
cantly outperforms state-of-the-art WSSS methods. The code is available
at https://github.com/Jsf826/SIA-WSSS.
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1 Introduction

Pathology images are significant for the clinical diagnosis and prognosis of dis-
eases. With the rapid development of artificial intelligence technology in the past
decade, the automatic analysis of pathology images has achieved performance
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comparable to that of human pathologists in some tasks [8, 17]. However, most
methods are based on supervised learning, and their performance mainly de-
pends on many training samples with detailed annotations. These annotations
usually require experienced pathologists, are expensive to obtain, and are prone
to human errors. In particular, pixel-level annotations on billions of pixels of
pathology images are unacceptable.

Compared with supervised and unsupervised learning, Weakly Supervised
Semantic Segmentation (WSSS) methods only need coarse-grained annotations
to perform semantic segmentation automatically [14,16]. According to the degree
of coarse-grained labels, the annotations of WSSS can be divided into image
annotations [13,15], bounding box annotations [9,18], and point annotations [25].
In this work, our motivation is to segment regions at the pixel level in pathology
images and rely only on image-level labels.

Generally, the pipeline of WSSS can be divided into three steps. It first trains
a classification network to generate class activation maps (CAMs) with image-
level labels [11, 26]. The CAM is then refined into pseudo-labels, which are fur-
ther used to provide dense supervision to retrain the segmentation model [1,23].
However, these methods tend to distinguish objects by the most discriminative
features, resulting in the activated area gradually shrinking and failing to iden-
tify the complete object area, significantly weakening the performance of WSSS.
Recently, Vision Transformer (ViT) [2] is well-known for establishing long-range
dependencies and has been widely adopted in WSSS. Benefiting from the self-
attention mechanism, several studies have shown that attention maps between
class and patch tokens can reliably highlight objects and generate accurate lo-
calization maps (LAMs) [4, 12].

However, ViT tends to aggregate global semantics in low-information patches
to capture long-range dependencies. It causes irrelevant patches to be frequently
associated with class tokens during attention, resulting in many weakly seman-
tically related regions being misactivated and severely damaging the quality of
LAMs [10,20].

In this work, we propose a novel framework named SIA-WSSS for weakly su-
pervised segmentation of pathology images. It comprehensively considers activa-
tion and inhibition information in weakly supervised segmentation of pathology
images and synchronizes them when generating segmentation results. Specifi-
cally, our SIA-WSSS first extracts class and patch tokens using ViT. Subse-
quently, we design a Regularized Focus Mechanism (RFM) to implicitly regular-
ize class-patch interactions through graph representation learning, ensuring that
the model can dynamically compress patch information and inhibit irrelevant
background. The RFM represents the class-patch tokens as a directed graph,
dynamically updates the graph node knowledge and aggregates independent in-
hibition information to the class tokens. Next, we introduce a Discriminative
Activation Module (DAM), which compares the class tokens of fine-grained re-
gions and global objects in pathology images to activate the foreground region
fully. Finally, we design a Region Self-modulation Module (RSM) to synchronize
the uncertainty region inhibition information and the foreground activation in-
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formation to generate more refined segmentation results. We use two datasets,
BCSS-WSSS [11] and LUAD-HistoSeg [3], to verify the effectiveness of our SIA-
WSSS in the weakly supervised pathology image segmentation task. In summary,
the main contributions of this work are as follows:

•We propose a weakly supervised semantic segmentation model with syn-
chronous inhibition and activation information, which can use image-level labels
to finely segment pathology images.

•We design a Regularized Focus Mechanism, which ensures that class to-
kens can compress patch information and inhibit irrelevant background through
implicit regularization dynamic updates of class-patch directed graphs.

•We introduce a Discriminative Activation Module to contrast the class to-
kens of fine-grained regions and global objects to capture the unique features of
each class and activate foreground regions.

•We present a Regional Self-modulation Module that synchronously inhibi-
tion and activation to generate segmentation results with delicate structures.

2 Methodology

The detailed structure of our proposed SIA-WSSS is shown in Fig. 1. The
SIA-WSSS includes the ViT Encoder, Regularized Focus Mechanism (RFM),
Discriminative Activation Module (DAM), and Region Self-modulation Module
(RSM). Given an input image X and classification label Y , we first use ViT to
generate patch tokens P and class tokens T and send them to RFM. The RFM
condenses the relevant patch semantics into a directed graph and generates a
feature map I with inhibition information by regularizing the attention among
class-patch tokens. Subsequently, we fed the input image X and the cropped X
with shared ViT to obtain the input fine-grained and coarse-grained class to-
kens of DAM. Subsequently, DAM can obtain the contrast activation map A by
consistently learning fine-grained and coarse-grained class tokens. Finally, RSM
combines the contrast activation map A and the inhibition information map I
to generate a segmentation result with a finer structure. The following sections
provide a detailed description of these steps.

2.1 Regularized Focus Mechanism

The SIA-WSSS adopts ViT as the backbone to extract pathology image features
(Fig. 1a). Given a pathology image X and a classification label Y , the ViT can
generate patch tokens P and class tokens T . Subsequently, the Regularized Focus
Mechanism constructs class-patch tokens as a novel directed graph structure
to suppress the false activations between class-patch tokens. As shown in Fig.
1b, we first use a linear projector to transform patch tokens P into heads and
tails, where heads simulate the correlation with patches and tails represent the
contribution of patches to heads. In addition, we customize the edge embedding
eij for P and select candidate neighbours to model the relationship between
heads hi and tails tj . The same operation also happens for class tokens T . After
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Fig. 1. The overview of the proposed SIA-WSSS. (a) Feature extraction; (b) Reg-
ularized Focus Mechanism; (c) Discriminative Activation Module; (d) Region Self-
modulation Module.

that, we can get the patch token graph Gp = {Vp, Rp, Zp, Ep} and the class token
graph Gt = {Vt, Rt, Zt, Et}, where V is the node corresponding to the class and
patch token, Z represents the head-tail, E represents the edge, and R represents
the directed information on the directed edge. Based on the constructed patch
token graph Gp and class token graph Gt, we further aggregate them into a
dynamic directed graph G = {Gp, Gt}. Then, we use the dynamic directed graph
G to generate the graph regularized class token Q. The generation strategy here
is expressed as follows:

Q = α1 (w1 (hi + ai)) + α2 (w2 (ai ⊙ hi)) , (1)

where α1/α2 represents LeakyReLU, W1/W2 is the projection matrix, and ai =
softmax(tTj tanh(hi+eij)) is the weighting factor used to quantify the knowledge
weight between nodes during the aggregation process.

Moreover, we further utilize CAM as a prior to search for the uncertainty
region M and adjust the class-patch representation in a learnable manner. As
shown in Fig. 1a, we utilize Lcls to maintain the classification head to generate
CAM by projecting the classification matrix onto the patch tokens P . Then,
we adopt a threshold-based search strategy to refine the CAM into foreground
(threshold > λ1), background (threshold < λ2), and uncertainty regions (other-
wise), the threshold 0 < λ1 < λ2 < 1. In order to prevent irrelevant regions from
being erroneously activated, we extract the uncertain regions from M as the in-
hibition confidence relationship map M ′ to guide the class-patch representation.
Specifically, for the patch token pij in P , we calculate the cosine similarity with
the class token q and use the class index on M ′ as the relationship supervision.
If the class token q ∈ Q has the same class index as the pixel (i, j) on M ′,
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the correlation between q and pij is considered to be negatively correlated and
suppressed. Finally, we can obtain the inhibition information map I with the
inhibition information of the uncertain region.

2.2 Discriminative Activation Module

Using RFM resolves the issue of incorrect activation in weak confidence regions.
However, the defect of failing to identify complete object regions is still un-
avoidable. Therefore, we design a Discriminative Activation Module(DAM) to
promote the representation consistency between fine-grained objects and coarse-
grained objects in pathology images, which can further enforce the activation
of complete object regions in CAM. As shown in Fig. 1c, we randomly crop
local images from the global pathology image X and input the shared encoder
ViT to obtain fine-grained class tokens and coarse-grained class tokens. Since
the class tokens in ViT capture the information of semantic objects [24], fine-
grained class tokens and coarse-grained class tokens aggregate the information of
global coarse-grained and local fine-grained objects, respectively. Subsequently,
minimizing the difference between fine-grained and coarse-grained class tokens
can make the representation of the entire object region more consistent. Specifi-
cally, the fine-grained class tokens and the coarse-grained class tokens first pass
through the projection heads Pf and Pc, respectively, which consist of a linear
layer and an L2 normalization layer. Assuming Af represents the projection of
the Coarse-grained class tokens and Ac represents the projection of the fine-
grained class tokens, the goal of DAM is to minimize the difference between Af

and Ac. Here, we use the InfoNCE loss [19] as the target:

Ldam =
1

N

∑
Ac

log
e(A

⊤
f Ac/τ)

e(A
⊤
f Ac/τ) + ϵ

, (2)

where N represents the number of Ac, τ is the temperature factor, and ϵ is a
small positive value. Finally, a more complete contrast activation map A of the
object area can be obtained.

2.3 Region Self-modulation Module

We can obtain the inhibition information map I and the contrast activation
map A through the above-mentioned Regularized Focus Mechanism and Dis-
criminative Activation Module. In order to give the segmentation result a finer
spatial structure, we propose the Region Self-modulation Module to synchronize
the inhibition and activation information for further refinement. For the contrast
activation map A, we first average its pixels to obtain the regional consistent acti-
vation feature representation F = ReLU(A)

max(A) . Then, we apply the Norm operation,
including ReLU and maximum normalization, to generate the region-consistent
activation map A′.

In addition, we propose a reliable filtering strategy to erase low-confidence re-
gions and keep the activation of high-confidence regions. We first use Class-wise
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Average Pooling to extract the inhibition feature representation I ′ from the inhi-
bition information map I. Then, the object threshold filters out the regions with
relatively low attention values. Subsequently, the erosion operation is applied
to reduce the weak-activation regions further and obtain the high-confidence
activation map I ′h. Finally, the refined segmentation result can be obtained by
combining the confidence activation map I ′h and the region-consistent activation
map A′:

Result = max(A, I ′h ⊗A′). (3)

In summary, the total loss of the SIA-WSSS during training can be defined
as:

L = Lcls + α1Ldam + α2Lseg. (4)

3 Experiments

Dataset: To verify the effectiveness of our proposed SIA-WSSS, we evaluated
the weakly supervised pathology image segmentation method on two datasets:
BCSS-WSSS [11] and LUAD-HistoSeg [3]. The LUAD-HistoSeg dataset contains
31,826 224×224 pathology images, covering four tissue categories: tumor epithe-
lium (TE), tumor-associated stroma (TAS), necrosis (NEC), and lymphocytes
(LYM). The BCSS-WSSS dataset contains 17,286 224×224 pathology images,
providing pixel-level annotations of five categories for each ROI, namely tumor
(TUM), stroma (STR), lymphocyte infiltration (LYM), necrosis (NEC), and
others (OTR).

Table 1. Quantitative comparison with state-of-the-art methods on the BCSS-WSSS
and LUAD-HistoSeg datasets. Net denotes the backbone for WSSS methods. mP:
mPrecision; mR: mRecall.

Model Net BCSS-WSSS LUAD-HistoSeg
mDice mIoU mP mR mDice mIoU mP mR

HistoSegNet [5] ResNet34 0.505 0.276 0.582 0.571 0.641 0.478 0.654 0.662
SC-CAM [6] ResNet50 0.729 0.663 0.742 0.733 0.715 0.641 0.756 0.761

WSSS-Tissue [11] ResNet101 0.767 0.697 0.786 0.758 0.818 0.756 0.826 0.822
SSC [7] ResNet101 0.755 0.654 0.727 0.727 0.772 0.731 0.783 0.748

Mctformer+ [22] ViT-B 0.772 0.707 0.790 0.766 0.825 0.763 0.830 0.825
DuPL [21] ViT-B 0.781 0.715 0.799 0.782 0.823 0.769 0.838 0.831
Our Model ViT-B 0.7990.7990.799 0.7340.7340.734 0.8180.8180.818 0.8250.8250.825 0.8550.8550.855 0.7850.7850.785 0.8720.8720.872 0.8590.8590.859

Competing Methods and Evaluation Metrics: To comprehensively evalu-
ate the proposed method, we compare SIA-WSSS with multiple weakly super-
vised segmentation methods, including HistoSegNet [5], SC-CAM [6], SSC [7],
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WSSS-Tissue [11], Mctformer+ [22], and DuPL [21]. All methods are evaluated
using four metrics: mDice, mIoU, mRecall and mPrecision.

Implementation Details: All of our experiments were performed on an
NVIDIA GeForce RTX A6000 GPU with 48GB memory and repeated 5 times to
calculate the average. The model training uses the Adam optimizer, the weight
decay is set to 5e− 4, and the learning rate is fixed to 1e− 4. The batch size is
16, and the λ1 and λ2 in RFM are 0.3 and 0.5. The weight parameters α1 and
α2 of the loss function are set to 0.5, respectively.

Fig. 2. Visualize the prediction results of our proposed SIA-WSS and the state-of-the-
art methods on BCSS-WSSS.

Comparison with SOTA Methods: Table 1 compares the proposed SIA-
WSSS quantitatively with recent state-of-the-art methods. Experimental results
show that our SIA-WSSS surpasses other state-of-the-art models. We attribute
this to the Regularized Focus Mechanism to suppress uncertain regions and the
Discriminative Activation Module to activate complete foreground object re-
gions. Specifically, our method produces higher accuracy than weakly supervised
segmentation models such as SC-CAM and HistoSegNet (Table 1). Moreover,
our SIA-WSSS produces more region-consistent segmentation results (Fig. 2).
In addition, our SIA-WSSS significantly outperforms other ViT-based methods
in terms of mDice and mIoU, which we attribute to the Region Self-modulation
Module’s synchronous activation and inhibition information to produce more
refined segmentation results. Fig. 3 shows the CAMs generated by the proposed
SIA-WSSS on LUAD-HistoSeg, which confirms our model’s weakly supervised
segmentation capability. In summary, our SIA-WSSS can produce accurate tissue
region segmentation results with only image-level labels of pathology images.

Ablation Study: To explore the effectiveness of each component of SIA-WSSS,
we conduct ablation studies to select the best settings. Table 2 shows the effects
of introducing different components on the segmentation performance (includ-
ing the Regularized Focus Mechanism (RFM), Discriminative Activation Module
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Fig. 3. Visualize the activation map of our SIA-WSS on LUAD-HistoSeg.

(DAM), and Region Self-modulation Module (RSM)). When the inhibition in-
formation with uncertain regions generated based on RFM is introduced (model
b), the improvement of mDice can be observed, which proves that enhancing
the inhibition information in the weak supervision process is beneficial. Model c
shows that adding DAM improves the accuracy of segmentation, which proves
the necessity of consistent learning of fine-grained and coarse-grained class to-
kens. In addition, after RSM (model f) is introduced, the model’s performance
reaches the best because RSM synchronous inhibition and activation information
are conducive to refining segmentation results. The results above demonstrate
that the SIA-WSSS, which integrates activation and inhibition information, sig-
nificantly outperforms the baseline model relying solely on activation data.

Table 2. Ablation analysis of different components in the proposed SIA-WSSS on
LUAD-HistoSeg.

Model name Baseline RFM DAM RSM mDice mIoU mPrecision mRecall
a ✓ 0.655 0.495 0.673 0.681
b ✓ ✓ 0.798 0.740 0.804 0.756
c ✓ ✓ 0.816 0.752 0.817 0.820
d ✓ ✓ ✓ 0.834 0.771 0.843 0.835

f (Ours) ✓ ✓ ✓ ✓ 0.8550.8550.855 0.7850.7850.785 0.8720.8720.872 0.8590.8590.859

4 Conclusion

This paper proposes a novel weakly supervised learning method (SIA-WSSS)
for pathology images using only image-level labels. The SIA-WSSS explores the
inhibition information of uncertain regions and the activation information of
foreground regions of objects through the Regularized Focus Mechanism (RFM)
and Discriminative Activation Module (DAM). The RFM captures inhibition
information from images by implicitly regularizing class-patch directed graphs.
At the same time, the DAM exploits the consistency of coarse-grained and fine-
grained features of pathology images to activate the complete foreground region
fully. In addition, we use the Region Self-modulation Module to coordinate inhi-
bition and activation information better. Experiments show that our SIA-WSSS
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can potentially become an effective means of annotating pathology images in
clinical applications.
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