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Abstract. Scalp disorders are highly prevalent worldwide, yet remain
underdiagnosed due to limited access to expert evaluation and the high
cost of annotation. Although AI-based approaches hold great promise,
their practical deployment is hindered by challenges such as severe data
imbalance and the absence of pixel-level segmentation labels. To address
these issues, we propose “ScalpVision”, an AI-driven system for the
holistic diagnosis of scalp diseases. In ScalpVision, effective hair seg-
mentation is achieved using pseudo image-label pairs and an innovative
prompting method in the absence of traditional hair masking labels.
Additionally, ScalpVision introduces DiffuseIT-M, a generative model
adopted for dataset augmentation while maintaining hair information, fa-
cilitating improved predictions of scalp disease severity. Our experimental
results affirm ScalpVision’s efficiency in diagnosing a variety of scalp
conditions, showcasing its potential as a valuable tool in dermatological
care. Our code is available at https://github.com/winston1214/ScalpVision.

Keywords: Scalp Disease Diagnosis · Generative Data Augmentation.

1 Introduction

Scalp disorders are a widespread concern, with nearly 90% of adults in the U.S.
experiencing some form of condition [6]. Left unchecked, even seemingly mild
scalp ailments can escalate into more serious outcomes, such as alopecia, un-
derscoring the importance of timely intervention. Consequently, early diagnosis
is crucial for preventing the progression of scalp-related diseases [16,17], high-
lighting the need for advanced diagnostic approaches that are both efficient and
accessible. Recognizing the importance of early detection, numerous studies have
explored scalp disease diagnosis using microscopic scalp imagery [4,11,19].

Nevertheless, effectively diagnosing scalp disorders relies heavily on measur-
ing critical features such as hair count and thickness, which demand precise
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Fig. 1: ScalpVision pipeline overview: I is the original image, model S generates
the hair segmentation mask M̂ using a pseudo-training set, MAP is the SAM-
produced mask, and M is the combined hair segmentation mask. The “Automatic
Prompt” for refining segmentation comes from M̂ . xsrc and xtrg are the source
and target images, with M as the mask image of xsrc. The weighted image sum
is denoted by ⊙ and D stands for DINO-ViT [3].

hair segmentation. However, generating pixel-level hair annotations is costly and
time-consuming, and no publicly available dataset provides such segmentation
labels. The only major resource, AI-Hub [1], offers classification labels for scalp
conditions but lacks segmentation annotations (see Section 3.1). Moreover, like
many scalp image datasets, it suffers from data imbalance, especially for severe
conditions, making it challenging to develop robust models.

To overcome these limitations, we propose ScalpVision, a comprehensive
system for the in-depth assessment of scalp health. First, we achieve label-free
hair segmentation by combining a naive segmentation model – trained on syn-
thetic image-label pairs – with an automatic prompting module for the Segment
Anything Model (SAM) [12], systematically generating positive and negative
point prompts to enable accurate hair masks without manual labeling. Build-
ing on these masks, we then introduce DiffuseIT-M, a diffusion-based image-
to-image translation framework that preserves hair details while altering scalp
conditions. By generating diverse training samples, our method effectively mit-
igates data imbalance, ultimately leading to enhanced diagnostic performance
for scalp diseases.

2 Method

As illustrated in Figure 1, central to ScalpVision is a hair segmentation module
(Section 2.1) and an image translation module for generating diverse scalp images
to augment training datasets for scalp condition classification (Section 2.2).
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Algorithm 1: Extraction of representative points from mask
Input: Mask M̂ , bounding box size n, cross-shaped structuring element kernel
Output: Representative hair points from mask Ĉ

1 Hcopy ← M̂ ; Ĥskel ← zero array with same size as Hcopy; B̂, Ĉ ← {}
2 while Hcopy ̸= 0 do
3 Eroded ← MORPHOLOGY_ERODE(Hcopy, kernel)
4 Dilated← MORPHOLOGY_DILATE(Eroded, kernel)
5 K̂ ← Hcopy −Dilated ; Ĥskel ← Ĥskel ∨ K̂ ; Hcopy ← Eroded

6 foreach (x, y) ∈ Hskel do
7 B̂ ← B̂ ∪ {(x− 1

2
n, y − 1

2
n, x+ 1

2
n, y + 1

2
n)}

8 B̂ ← NMS(B̂)

9 foreach (x1, y1, x2, y2) ∈ B̂ do
10 Ĉ ← Ĉ ∪ {(x̄, ȳ)} as in Eq.(1)

11 return Ĉ

2.1 Label-Free Hair Segmentation

For the precise diagnosis of scalp conditions, our initial step involves segment-
ing hair within microscopic scalp images. However, since most scalp condition
datasets lack segmentation labels, supervised learning methods are not feasible.
Heuristic-driven pseudo-labeling. To address the absence of hair segmenta-
tion, we first generate pseudo labels for training our segmentation model (S as
shown in Figure 1) using prior knowledge. With the intuition that the hair on the
microscopic scalp images follows either a linear function or a power function, we
generate synthetic images to effectively guide the model to learn hair patterns
on the scalp images. For each disease condition, we randomly select one image
representing each distinct severity level, extract three smaller patches from re-
gions of the scalp with no visible hair, and draw curves to simulate hair patterns.
Additionally, to simulate dandruff noise, circular white shapes are added to these
patches but are not indicated in the pseudo masks, thus training the model to
interpret them as noise. We generate 3,000 pseudo-images and corresponding
pseudo mask labels, using them to train the U2-Net [18] which generates the
binary mask, M̂ = M̂(i, j) ∈ {0, 1}H×W , where H and W are the height and
width of the image, and i ∈ [1, H], j ∈ [1,W ] denote pixel coordinates.
Automatic prompting for SAM. To refine the hair segmentation mask M̂ ,
we utilize the foundation segmentation model, SAM [12], employing a point-
prompting method to differentiate hair from scalp without additional training.
However, selecting random points from M̂ for positive prompts often led to
suboptimal masks, mainly due to points near the edges of M̂ confusing the
SAM. Furthermore, the intrinsic randomness occasionally caused sampled points
to coalesce within a confined region, thereby leading the SAM to segment only
a limited subset of hairs. To address these issues, we developed an automatic
prompting method, shown in Algorithm 1, that uniformly samples across M̂ and
uses the coarse segmentation mask M̂ to guide the SAM with high confidence.
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To extract the distinct features of the hair, we compute the skeletonized mask,
Ĥskel ∈ {0, 1}H×W , using morphological erosion and dilation following [23].
Then, we generate bounding boxes around each pixel in Ĥskel with size n × n
where we set n = 10. These boxes undergo non-maximum suppression (NMS)
to filter out the bounding boxes, denoted as B̂ = {b̂j}kj=1, where each box is
defined by coordinates (xmin, ymin, xmax, ymax). Following this, the mean points
of the hair pixels, Ĉ = {ĉj}kj=1, in each bounding box B̂ can be determined. For
each b̂j = (x1, y1, x2, y2), the mean point ĉj = (x̄, ȳ) is given by:

x̄ =

∑
i

∑
j i · Ĥ(i, j)∑

i

∑
j Ĥ(i, j)

, ȳ =

∑
i

∑
j j · Ĥ(i, j)∑

i

∑
j Ĥ(i, j)

(1)

where the summation is over all i ∈ [x1, x2] and j ∈ [y1, y2].
Subsequently, we select positive point prompts for SAM from the calculated

mean points Ĉ. For the negative point prompts, we utilize the inverse of the
initial mask, specifically 1− M̂ . These prompts, automatically generated, guide
SAM in generating the binary segmentation mask, MAP ∈ {0, 1}H×W .
Mask ensemble. MAP and M̂ complement each other with strengths and weak-
nesses. M̂ is robust against noise like dandruff as it was trained using simulated
noise. Meanwhile, MAP, benefiting from SAM’s superior edge detection, excels
in constructing a clear boundary between hair and scalp. Therefore, to make a
robust hair mask, the final binary mask, M , is derived from M̂ and MAP with
the logical AND operation (M = M̂∧MAP), followed by a noisy region removal
post-processing step with connected-component analysis.

2.2 Scalp Condition Classification

Accurately classifying scalp disease severity from microscopic images is difficult
due to the rarity of extreme cases. To address this, we introduce DiffuseIT-M, a
diffusion-based image translation model with mask guidance that transforms a
source image into various scalp conditions while preserving hair content. Build-
ing on DiffuseIT [13] and incorporating an image editing technique inspired by
blended diffusion [2], DiffuseIT-M enables robust augmentation of underrepre-
sented classes for improved classification.
Image translation with mask guidance. To facilitate the transfer of scalp
disease characteristics while preserving hair features in our model, we utilize a
comprehensive loss function, ℓtotal, that guides the reverse process and is com-
posed of five distinct loss components. These components consider the source
image (xsrc), the target image (xtrg), and the hair mask (M) as inputs. The
combined loss function is defined as:

ℓtotal (x;xsrc,xtrg,M) = λ1ℓstyle + λ2ℓcontent + λ3ℓmask + λ4ℓsem + λ5ℓrng, (2)

where λi∈[1,5] denotes the weights assigned to each of these loss functions.
For ℓstyle and ℓcontent, we utilize the style and content loss functions from

DiffuseIT. We employ the [CLS] token matching loss using DINO-ViT [3] to
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Fig. 2: Data distribution of different severity within each scalp condition.

reflect semantic information in xtrg and use keys of multi-head self-attention
layers to preserve the content of xsrc. Additionally, to ensure hair preservation
while translating scalp styles, we construct a mask preservation loss function as:

ℓmask = LPIPS(xsrc ⊙M, x̂0(xt)⊙M) + ||(xsrc − x̂0(xt))⊙M ||2, (3)

where LPIPS denotes the learned perceptual image patch similarity metric [22]
and x̂0(xt) is the estimation of the cleaned image derived from the sample xt:

x̂0(xt) =
xt√
ᾱt
−
√
1− ᾱtϵθ(xt, t)√

ᾱt
. (4)

We also include two additional losses: ℓrng, representing the squared spherical
distance as proposed in [5], and ℓsem, indicating the semantic divergence loss as
outlined in [13]. Using this composite loss function, ℓtotal, we guide the generation
of the next sample step, xt−1. To preserve hair details, we apply a masking
approach:

xt−1 ← xt ⊙M +
[
x̂0(xt)−∇xtℓtotal

(
x̂0(xt)

)]
⊙ (1−M). (5)

This method allows scalp style translation without extra training.
Classification strategy. Using DiffuseIT-M, we augment our training set by
translating randomly chosen images into higher severity levels via weighted sam-
pling, where selection probability is inversely proportional to the class’s size. We
fine-tune a pretrained backbone with four MLP heads, each tied to a specific
loss. One head detects the presence of scalp diseases (dandruff, excess sebum,
erythema), while the other three classify their severities (good, mild, moderate,
severe). Our objective, ℓcls, is the sum of four losses: ℓdis (binary cross-entropy for
disease presence), and ℓdand, ℓseb, ℓery(cross-entropy for severity classification).
This design enables simultaneous disease detection and severity assessment.

3 Experiments

3.1 Dataset

Despite the lack of publicly available datasets, we accessed a specialized dataset
from AI-Hub [1] for classifying the severity of scalp dermatologic conditions.
† The dataset comprises 95,910 images with a resolution of 640 × 480 pixels
† This dataset is provided by ‘The Open AI Dataset Project (AI-Hub, S. Korea)’ and

is exempt from IRB approval as it does not contain any information that can identify
individuals. The dataset is publicly accessible at https://aihub.or.kr.

https://aihub.or.kr
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Original Image GT Kim et al. [10]Shih et al. [20] Yue et al. [21] SAM [12] Ours ( ෡𝑀) Ours (𝑀AP) Ours (𝑀)

Fig. 3: Comparison of various segmentation methods on hair. “GT” represents
the mask images for which we have manually annotated the pixel segmentation.
Note that M̂ , MAP and M are proposed in Section 2.1.

Table 1: Performance of hair segmenta-
tion on the test set.

Approach Pixel-F1 Jaccard Dice

Shih et al. [20] 0.706 0.348 0.512
Yue et al. [21] 0.794 0.493 0.654
Kim et al. [10] 0.815 0.561 0.708

SAM [12] 0.503 0.361 0.502

Ours
M̂ 0.853 0.604 0.748

MAP 0.836 0.595 0.743
M 0.868 0.649 0.786

Table 2: Quantitative analysis of image-
to-image translation.

Model FID (↓) LPIPS (↓)

DiffuseIT 138.42 0.463
AGG 141.70 0.492
Ours 74.84 0.353

from 20,000 patients. It is split into 72,342 training and 23,568 test images, with
21,703 from the training set used for validation. Dermatologists labeled each
image for dandruff, excess sebum, and erythema, categorizing severity as good,
mild, moderate, or severe. The dataset is heavily skewed toward good and mild
cases (Fig. 2) and lacks segmentation labels. Thus, we manually annotated hair
regions in 150 test images to evaluate our hair segmentation methods.

3.2 Hair Segmentation

Because narrow hairs are difficult to segment, many existing unsupervised meth-
ods still rely on traditional computer vision for hair-specific challenges. Accord-
ingly, we compare prior scalp segmentation approaches [20,21,10] as baselines
and also evaluate the foundational model SAM [12]. In addition, we conduct an
ablation study on our final mask M and its intermediate versions M̂ and MAP.
Quantitative results. Table 1 reveals that our methods surpass the perfor-
mance of existing hair segmentation techniques. In particular, the approach of
combining the advantages of the two masks, M̂ and MAP using the logical AND
operator in M showed the best performance. These results show the limitations
of traditional computer vision techniques used in previous studies for image seg-
mentation, revealing a lack of understanding in capturing the intricate patterns



ScalpVision 7

Source Target Ours DiffuseIT [13] AGG [14]
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Fig. 5: Image translation results using
various mask guidance. Note that our
approach is guided by 1−M .

of hair and the scalp. Additionally, SAM was less effective for automatic seg-
mentation when used without specific guidance.
Qualitative results. As shown in Figure 3, our approach demonstrates effective
hair segmentation with robustness to noise, providing clear and accurate hair
segmentation compared to previous methods. Furthermore, it shows that M̂ faces
challenges in clearly capturing hair, and it exhibits robustness against noise such
as dandruff. Conversely, MAP captures the hair well but is less robust to noise.
Therefore, the combination of the two masks, M , demonstrates the mitigation
of the drawbacks of each mask.

3.3 Synthetic Image Generation

For the evaluation of DiffuseIT-M, we compared our model against DiffuseIT [13]
and AGG [14] as baselines for the image-to-image translation model. This eval-
uation demonstrates that our model not only achieves high fidelity in image-to-
image translation but also effectively preserves the desired hair details.
Quantitative results. We have selected to employ the FID [8] and LPIPS [22]
scores for fidelity evaluation using images from our augmentation dataset, with
DiffuseIT and AGG serving as baseline models. Table 2 reveals that DiffuseIT-
M outperforms other models in both metrics, indicating superior image fidelity.
This high-quality image generation is attributed to our model’s effective imple-
mentation of mask guidance.
Qualitative results. Figure 4 shows that both DiffuseIT and AGG models
fail to preserve the hair content information from the source image. Further-
more, these models tended to compromise overall information and were unable
to transfer the semantic information. However, our model successfully preserved
hair content information and transferred the semantic information.
Effect of mask guidance. We conducted experiments to examine the impact
of mask guidance on hair information preservation during image translation. As
illustrated in Figure 5, our method, guided by the mask 1−M , effectively retains
hair features while successfully transferring the semantic attributes of the target
image onto the scalp. In contrast, using the reverse mask, M , leads to only minor
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Table 3: Performance of scalp condition classification with various augmentation
methods, denoted after “+” symbol, on the test set. The second column displays
the overall macro-F1 score, while the columns from the third onward show the
F1 scores for each severity level of the three diseases.

Model F1 Dandruff Sebum Erythema
macro good mild moderate severe good mild moderate severe good mild moderate severe

DenseNet 0.582 0.796 0.514 0.592 0.614 0.554 0.601 0.641 0.000 0.776 0.729 0.565 0.601
+ Gaussian Noise 0.567 0.780 0.497 0.566 0.597 0.471 0.581 0.595 0.000 0.751 0.712 0.614 0.635
+ AugMix 0.525 0.789 0.501 0.589 0.000 0.504 0.588 0.634 0.000 0.743 0.718 0.596 0.585
+ DiffuseIT 0.608 0.809 0.482 0.604 0.650 0.536 0.613 0.625 0.202 0.774 0.740 0.621 0.639
+ AGG 0.610 0.811 0.480 0.591 0.654 0.518 0.598 0.612 0.300 0.771 0.740 0.629 0.621
+ Ours 0.636 0.820 0.541 0.625 0.665 0.536 0.617 0.641 0.430 0.758 0.734 0.621 0.641

EfficientFormerV2 0.569 0.795 0.417 0.598 0.628 0.526 0.565 0.628 0.000 0.772 0.709 0.623 0.569
+ Gaussian Noise 0.562 0.780 0.477 0.566 0.633 0.460 0.585 0.550 0.000 0.742 0.714 0.598 0.637
+ AugMix 0.577 0.789 0.494 0.592 0.635 0.519 0.593 0.623 0.000 0.746 0.724 0.620 0.590
+ DiffuseIT 0.596 0.798 0.441 0.598 0.632 0.526 0.595 0.606 0.236 0.766 0.715 0.612 0.621
+ AGG 0.610 0.801 0.509 0.604 0.626 0.511 0.583 0.608 0.300 0.787 0.736 0.624 0.628
+ Ours 0.635 0.807 0.529 0.619 0.669 0.535 0.613 0.632 0.406 0.781 0.738 0.639 0.648

alterations in scalp color from the target image, with a notable transfer of hair
semantic information from the target. When no mask (0) is applied, the transla-
tion results in minimal color change, failing to transfer conditions like dandruff
from the target. Conversely, with a full mask (1), both hair and scalp features
are subjected to changes. This differentiation in results highlights the impor-
tance of mask guidance in preserving specific image features, demonstrating the
versatility of our approach in handling different translation objectives.

3.4 Scalp Condition Classification

To demonstrate the effectiveness of our augmentation method using generated
images, we employed two different models as the classification backbone: DenseNet
[9] as a CNN and EfficientFormerV2 [15] as a Transformer. As summarized in
Table 3, we compared only those augmentation methods that preserve a one-
to-one correspondence between each image and its original, unambiguous set of
condition labels—Gaussian noise, AugMix [7], DiffuseIT [13], and AGG [14]. Our
approach, which specifically employs DiffuseIT-M, achieved the highest perfor-
mance in both models. Notably, classifying the severe sebum class proved to be
especially challenging when using non-generative augmentation methods. This
difficulty arises primarily due to the extreme scarcity of samples for this class.
The augmentation of the training dataset with generative models led to enhanced
performance compared to the baseline. Our model, in particular, exhibited su-
perior accuracy compared to DiffuseIT and AGG, which struggled to preserve
the essential information of the hair effectively. This underscores the significance
of incorporating both the scalp style details and the hair content information in
the scalp disorder classification.
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4 Conclusion and Discussion

In this work, we introduced ScalpVision, a diagnostic system designed for
a complete evaluation of scalp health. Our approach combines label-free hair
segmentation – based on a naive segmentation model and a foundation segmen-
tation model (SAM) – with diffusion-based data augmentation to address data
imbalance and preserve critical hair features. However, scalp disorders are influ-
enced by both scalp conditions and hair information. Thus, we plan to utilize
hair information to extend our research to conditions like alopecia beyond the
three scalp diseases. We envision ScalpVision as a meaningful step towards a
generalized diagnostic system for dermatological applications.
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