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Abstract. Accurate identification of breast lesion subtypes can facil-
itate personalized treatment and interventions. Ultrasound (US), as a
safe and accessible imaging modality, is extensively employed in breast
abnormality screening and diagnosis. However, the incidence of differ-
ent subtypes exhibits a skewed long-tailed distribution, posing signif-
icant challenges for automated recognition. Generative augmentation
provides a promising solution to rectify data distribution. Inspired by
this, we propose a dual-phase framework for long-tailed classification
that mitigates distributional bias through high-fidelity data synthesis
while avoiding overuse that corrupts holistic performance. The frame-
work incorporates a reinforcement learning-driven adaptive sampler, dy-
namically calibrating synthetic-real data ratios by training a strategic
multi-agent to compensate for scarcities of real data while ensuring sta-
ble discriminative capability. Furthermore, our class-controllable syn-
thetic network integrates a sketch-grounded perception branch that har-
nesses anatomical priors to maintain distinctive class features while en-
abling annotation-free inference. Extensive experiments on an in-house
long-tailed and a public imbalanced breast US datasets demonstrate
that our method achieves promising performance compared to state-
of-the-art approaches. More synthetic images can be found at https:
//github.com/Stinalalala/Breast-LT-GenAug.

Keywords: Breast ultrasound · Histological subtype · Long-tailed recog-
nition · Diffusion model

1 Introduction

The global prevalence of breast cancer [21] drives widespread adoption of early
screening tools, with ultrasound (US) emerging as the preferred modality for
younger cohorts with dense breasts [6]. While standard protocols predominantly
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Fig. 1. Breast US images of lesions with different histological subtypes. The histogram
indicates the incidence of different subtypes, which exhibit a long-tailed distribution.
Red-bordered images are real US images, while the blue-bordered ones are synthetic
data generated using the proposed framework.

emphasize binary lesion classification regarding malignancy/benignity, contem-
porary clinical findings suggested that the identification of different lesion sub-
types may be critical for optimizing treatment planning and management [1].

However, the incidence rates of different subtypes naturally exhibit an ex-
tremely skewed long-tailed distribution that presents substantial challenges for
accurate recognition (see Fig. 1). This diagnostic complexity is compounded by
inter-class morphological overlap (e.g., FAD vs. BPT, IP vs. DCIS in Fig. 1),
coupled with marked intra-class heterogeneity [12]. Common deep learning clas-
sifiers [2,8,14], despite their advancements, may suffer severe performance degra-
dation in long-tail scenarios.

In recent years, many studies have been proposed for long-tailed recogni-
tion [29], which can be mainly divided into three categories: 1) Re-balancing-
based methods seek to re-balance the negative influence brought by the class
distribution asymmetry [3, 13]; 2) Architecture-enhanced approaches often en-
semble multiple models or incorporate additional modules to improve the ro-
bustness against long-tailed data [4,10,18]; 3) Augmentation-based schemes aim
to improve both the quantity and diversity of training datasets. Classical meth-
ods apply predefined transformations to data samples or features [5], while some
recent approaches investigated the potential of applying denoising diffusion prob-
abilistic models (DDPMs) to synthesize high-quality medical images for down-
stream tasks [11, 16]. Compared to re-balancing methods, synthetic approaches
can rectify data distributions through conditional generation, thereby avoiding
both overfitting to head classes and overcompensating for tail classes. Further-
more, as these methods only affect the training phase, they enable fast and



BreastGenAug 3

lightweight inference during testing without requiring complex network struc-
tures in architecture-enhanced models. Nevertheless, current synthetic solutions
may still face two limitations in addressing the proposed task: 1) The predom-
inant paradigm fails to explicitly address distribution skewness and remains
susceptible to biased sampling during model training. 2) Limited capability in
capturing fine-grained tissue patterns that may undermine the discriminative
power of synthetic instances, particularly in tail classes with limited exemplars.

Based on the above analysis, we propose a dual-phase framework for long-
tailed classification that mitigates data asymmetry through high-fidelity data
synthesis while dynamically modulates synthetic usage to maintain balanced
classification performance. This cascaded data curation pipeline enhances diver-
sity expansion while avoiding noise amplification. It is equipped with a rein-
forcement learning (RL)-driven class adaptive sampler that automates batch
composition by learning to balance head-class stability and tail-class explo-
ration. Additionally, our class-controllable synthetic network is also guided with
a sketch-grounded perception branch that injects anatomical priors to retain
class-discriminative traits while facilitating annotation-free inference.

2 Methodology

Fig. 2 presents our two-stage framework for long-tailed breast lesion classifica-
tion in US images. The first stage employs a label-conditioned synthesizer with
structural perception constraints, enabling class-tailored image synthesis from
Gaussian noise while maintaining diagnostic structural fidelity. The second stage
incorporates an RL-driven class adaptive sampler (RL-CAS) that automatically
optimizes batch composition by dynamically balancing synthetic-real data dur-
ing classifier training, effectively addressing long-tailed distribution challenges
through focal learning.

2.1 Synthesizer for High-fidelity Image Generation

Preliminaries of DDPMs. DDPMs [9,19] are generative models that learn to
model data distributions by iteratively denoising corrupted inputs. To alleviate
the computational burden of pixel-space training in standard DDPMs, latent dif-
fusion models (LDMs) [17] were introduced for perceptual compression. The ob-
jective function of LDM can be formulated as: LLDM = Ez0,ϵ,t,c||ϵ−ϵθ(zt, t , c)||2,
where z0 is the latent code of the training data from a pre-trained variational
autoencoder (VAE) [7], t represents the time step, ϵθ and ϵ are the predicted
and target noise, respectively. Here, c indicates the (optional) control signal that
the model can be conditioned on. In the proposed synthesizer, c is specifically
defined as the class label representing the subtype of breast lesions.
Basic Architecture of Class-steerable Synthesizer. Building upon the
LDM, our synthesizer architecture integrates two key synergistic components:
a. variational latent encoding and b. guided denoising. The VAE encoder com-
presses medical images into compact latent representations, while the UNet-
shaped denoiser progressively removes the noise added to the latent features
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Fig. 2. Pipeline of our proposed framework. E ,D indicate pre-trained encoder and de-
coder in VAE, respectively. zt refers to latent features after the t-step diffusion process.
RL, reinforcement learning.

through several convolution-attention hybrid blocks. To ensure diagnostic rele-
vance, we implement disease-specific generation control by injecting class labels
into the denoising trajectory, following a similar approach in [30].
Structural Perception Supervision for Refined Reconstruction. Label-
guided data synthesis achieves basic class matching but struggles with anatom-
ical structure fidelity in complex cases, limiting its practical utility. Current
methods often inject geometric conditions (e.g., segmentation masks) in the de-
noiser to improve structural control [15,28]. However, such implicit conditioning
may degrade generative capacity in the absence of test-time annotation inputs,
which is commonly unavailable in clinical scenarios [31]. Inspired by [23, 25],
we propose to overcome this by introducing explicit structural perception su-
pervision through sketches to capture anatomical priors. This design enables
annotation-free inference while preserving fine anatomical details.

To this end, as shown in Fig. 2, we introduce a sketch-grounded percep-
tion branch during synthesizer training. Specifically, multi-scale latent features
f = [f1, f2, f3, f4] from the encoding path of the denoising network, correspond-
ing to resolutions of [H×W, H

2 ×W
2 , H

4 ×W
4 , H

8 ×W
8 ], are extracted as the branch

input. H,W represent the height and width of the latent features before input
to the denoiser, respectively. Then, we propose a pixel-level sketch decoder that
concatenates f and performs upsampling via transposed convolution to produce
sketch predictions. To achieve refined structural reconstruction, this study intro-
duces a customized sketch loss, utilizing the rich anatomical priors from sketches.
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Fig. 3. Illustration of the RL-driven class adaptive sampler. Starting from a uniform
initial state (green histogram on the left), multiple agents take different actions to
modify the ratio of synthetic data during training to optimize the reward.

The core idea is to optimize the high-dimensional feature space of the denoiser
in a self-supervised manner through an L1 loss to minimize the reconstruction
error between the predicted sketch Spred and its ground truth counterpart Sgt.
Note that Sgt is precomputed using the sketch extractor [20]. To balance the
noise scale in the latent features, referring to [23], we apply

√
ᾱt from DDPM [9]

as scaling factors to the above L1 loss for ensuring feature efficacy and easing
the synthesizer training. To summarize, our sketch loss for structural perception
supervision can be described as: Ls =

√
ᾱt · L1(Spred, Sgt). This encourages the

synthesizer to focus on latent features with lower noise (i.e., smaller time steps)
and vice versa. Eventually, the objective function of our synthesizer combines the
basic LLDM with Ls, which is represented as follows: L = LLDM + λLs, where
λ is a hyperparameter that controls the strength of the perception supervision.

2.2 RL-driven Class Adaptive Sampler for Enhanced Classification

Strategic deployment of these synthesized data during downstream training is
equally important for effective long-tailed classification, as improper usage can
exacerbate existing imbalances or introduce new biases. While synthetic data
generation addresses class scarcity, its value hinges on how these samples inter-
act with real data throughout the learning process. To address this, we propose
an RL-driven class adaptive sampler that dynamically calibrates synthetic-real
data ratios during the classifier training. This dynamic adjustment ensures that
synthetic data selectively compensates for the scarcities of real data while main-
taining the authentic patterns that ensure feature fidelity.

Following the classical RL setting, we define a multi-agent M = {m1, ...,mC}
with its current state S that interacts with the environment E by taking sequen-
tial actions A, aiming to maximize the expected reward. Concretely, the envi-
ronment E is the breast US dataset containing both real and synthetic images.
The state S is the set of synthetic sample counts for C classes in a mini-batch,
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S = {s1, s2, . . . , sC}. Each agent mi with its parameters θi adjusts the sampling
number of synthetic images for a specific class. The entire action space is de-
fined as A = {ai|i = 1, 2, . . . , C}, where ai = [−2, 0,+2] indicates the step size of
the sampling number adjustment determined by probability p(ai) output from
mi(θi). As shown in Fig. 3, the agents iterate K episodes to generate K different
states by choosing different actions. K identical classifiers are then trained in
parallel using K batch compositions to update their parameters, respectively.
The classifier with the highest validation metric is selected, and its weights are
used to initialize the classifier for the next epoch. After K episodes, the pa-
rameters of the agents {θi|i = 1, 2, . . . , C} are updated using the REINFORCE
rule [24]. Particularly, the ith agent is updated following:

θt+1
i = θti + η

1

K

K∑
j=1

(Rj −Bt) · ∇θ log(g(a
t,j))

= θti + η
1

K

K∑
j=1

(Rj −Bt) · ∇θ

C∑
i=1

log(p(at,ji )),

(1)

where η is the learning rate, g(at,j) =
∏
(p(at,ji )) represents the joint probability

distribution of different actions in the jth episode at tth epoch. Bt is a baseline
term to improve the stability of the agents [22], which is expressed as follows:

Bt = (1− γ) ·Bt−1 + γ · ( 1
K

K∑
j=1

Rj), (2)

where γ is a constant. Note that Bt is simplified to γ · ( 1
K

∑K
j=1 Rj) when t = 1.

The reward Rj is defined as (ϵj + 0.04)3, where ϵj ∈ [0, 1] is the specific met-
ric calculated on the validation set with jth classifier. The cubic function is
utilized to enhance the reward signal. This dynamic sampling adjustment au-
tomates mini-batch construction, effectively balancing long-tailed data distribu-
tions. Furthermore, it enables noise stabilization by modulating synthetic usage
in sync with the model’s evolving discriminative capability, preventing excessive
synthetic samples from corrupting learned embeddings.

3 Experiments and Results

Datasets and implementation details. We evaluated our method on two
breast US datasets: an in-house long-tailed dataset Breast-LT-8 (max class im-
balance ratio 47.98:1, see Fig. 1) and the public BreastMNIST dataset [26] to
provide complementary validation on class imbalance. Approved by the local
IRB, the Breast-LT-8 dataset containing 5622 US images with 8 classes of dif-
ferent histological subtypes of breast lesions was collected from 2811 patients.
All images were resized to 256×256 and corresponding ground truth labels were
obtained through biopsies. The Breast-LT-8 was split randomly at the patient
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Table 1. Performance comparison of different methods on the in-house Breast-LT-8
dataset and the public BreastMNIST dataset. Higher values mean better performance,
except for FID. All metrics except FID and AUC are presented in percentages (%).

Methods
Breast-LT-8 BreastMNIST [26]

F1 Rec Pre All Many Med Few FID Acc AUC

Baseline 30.94 30.81 31.11 70.13 80.68 21.29 0.00 - 84.20 0.866
CBFocal 25.47 28.44 25.97 50.64 57.80 19.94 16.07 - 83.97 0.840
Logit-Adjust 31.97 32.10 31.88 70.96 81.27 20.44 6.25 - 87.18 0.888

LIFT 20.06 20.31 26.62 42.08 47.99 14.94 26.37 - 87.03 0.848
ProCo 30.36 38.21 29.87 58.65 65.28 24.79 36.67 - 83.13 0.868
NCL 29.15 35.10 29.44 54.78 61.73 19.69 39.29 - 88.46 0.861

GLMC 34.06 38.83 32.57 66.22 75.29 26.61 26.79 - 84.62 0.857
MGDM 32.78 33.41 32.58 70.00 80.11 20.52 12.50 36.28 87.05 0.951
Skin-SDM 33.30 35.40 32.25 68.59 77.58 27.32 9.38 32.46 88.72 0.938
Ours 35.23 38.98 34.39 72.31 82.14 28.26 31.25 30.19 89.10 0.924

Table 2. Results of the ablation study using the Breast-LT-8 dataset.

Methods F1 Rec Pre All Many Med Few

Baseline 30.94 30.81 31.11 70.13 80.68 21.29 0.00
+SynClass 31.82 32.14 32.33 70.58 80.42 19.39 9.38
+SynSketch 34.73 34.89 34.94 72.18 82.23 21.70 12.95
+SynClass+Re-sampling 29.48 34.96 29.35 60.58 67.81 20.17 31.70
+SynClass+RL-CAS 34.21 35.87 33.25 71.22 81.03 23.42 15.62
Ours 35.23 38.98 34.39 72.31 82.14 28.26 31.25

level with a ratio of 7:1:2 for training, validation, and testing. The BreastMNIST
(containing 780 US images with size 224 × 224) was utilized for binary classifi-
cation. The synthesizer was trained using an AdamW optimizer with a learning
rate of 1e-4 for 200 epochs. The downsampling factor of VAE was 8. We set the
λ in the sketch loss to 0.1. For the RL-CAS, the state was initialized to 2 and
the episode K = 3 in each epoch. The γ was set to 0.99. The agents were trained
for 30 epochs using an Adam optimizer with a learning rate of 1e-3.

Method Comparison. As shown in Table 1, the proposed method was
compared against both classical and the state-of-the-art (SOTA) approaches in
long-tail classification, including: a) re-balancing-based, i.e., CBFocal [3], Logit-
Adjust [13]; b) architecture-enhanced, i.e., LIFT [18], ProCo [4], NCL [10]; c)
augmentation-based, i.e., GLMC [5], MGDM [11], Skin-SDM [16]. Performance
was calculated using common evaluation metrics such as F1-score (F1), precision
(Pre), recall (Rec), all accuracy (All), shot accuracy (Many, Med, Few), Area
Under Curve (AUC), as well as Fréchet Inception Distance (FID) for generative
approaches. Note that we adopt ResNet with Balanced Softmax as a strong base-
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line for long-tailed classification to ensure fair benchmarking while the backbone
can be easily replaced for future explorations.

In Breast-LT-8 dataset, compared to the re-weighting methods (rows 2-3),
our approach demonstrated significant improvements across all metrics which in-
dicates its capacity on effectively recognizing tail classes while preserving robust
performance on head classes (e.g., F1=35.32, Many=82.14, Few=31.25). In terms
of accuracy for many-shot and few-shot, CBFocal and Logit-Adjust exhibited
opposite performance trends, highlighting that different re-weighting strategies
distinctly prioritize different class samples. Interestingly, although architecture-
enhanced methods (rows 4-6) showed promising improvements in recognizing tail
classes compared to the baseline, these gains may not translate into significant
benefits in F1-score, suggesting that excessive focus on the tail classes may hinder
the overall performance (e.g., see the low F1-score=20.06 and All Acc=42.08 ob-
tained by LIFT). Overall, augmentation-based approaches (rows 7-10) achieved
relatively higher F1-scores, likely arising from the increasing data quantity and
diversity that mitigate data imbalance. Moreover, our proposed method outper-
formed other generative augmentation approaches (e.g., MGDM and Skin-SDM)
across all metrics, validating its robust capability in adapting to long-tailed data
distributions. Conversely, experimental results on the BreastMNIST dataset
revealed narrowed performance gaps among mainstream methods. This con-
vergence potentially originates from milder class imbalance and reduced task
complexity in binary classification. Notably, our approach maintains superior
accuracy, confirming its robustness for imbalanced classification scenarios.

Ablation studies. To investigate the impact of each proposed component,
we conducted ablation experiments by ablating the generator(+Synclass), the
structural perception branch(+SynSketch), and the RL-CAS sampler (see Table
2). Note that we also implement a classical re-sampling approach following [27]
(see row 4) as an alternative for the RL-CAS sampler. Compared to the base-
line, the incorporation of synthetic data alone has augmented the dataset volume
and diversity that lead to elevated F1-score and Rec (see row 1 and 2). Further-
more, the addition of the Sketch-Grounded Perception not only boosted the
many- and medium-shot accuracy, but also further enhanced recognition of tail
classes. These findings underscore the indispensable role of fine-grained struc-
tural guidance in synthesizing discriminative training samples. Meanwhile, the
hand-crafted fixed resampling methods (row 4) yielded lower F1 score even with
synthetic augmentation. This verifies the previous hypothesis that improper or
excessive usage of synthetic samples may induce subtype-specific overfitting at
the expense of holistic model capability. In contrast, the RL-CAS dynamically
calibrates synthetic-real data ratios to fully exploit synthetic samples while pre-
serving holistic classification accuracy.

4 Conclusion

We propose a two-phase framework for long-tailed classification, addressing data
asymmetry through high-fidelity synthesis and adaptive sampling. It integrates
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a reinforcement learning-driven sampler to balance head-class stability and tail-
class exploration, alongside a sketch-grounded perception branch that injects
anatomical priors to retain class-discriminative traits. Extensive experiments
on in-house and public breast US datasets demonstrate balanced classification
performance across different metrics. In the future, we will extend the framework
to more long-tailed datasets and tasks.
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