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Abstract. Language promptable X-ray image segmentation would en-
able greater flexibility for human-in-the-loop workflows in diagnostic and
interventional precision medicine. Prior efforts have contributed task-
specific models capable of solving problems within a narrow scope, but
expanding to broader use requires additional data, annotations, and
training time. Recently, language-aligned foundation models (LFMs) –
machine learning models trained on large amounts of highly variable im-
age and text data thus enabling broad applicability – have emerged as
promising tools for automated image analysis. Existing foundation mod-
els for medical image analysis focus on scenarios and modalities where
large, richly annotated datasets are available. However, the X-ray imag-
ing modality features highly variable image appearance and applications,
from diagnostic chest X-rays to interventional fluoroscopy, with varying
availability of data. To pave the way toward an LFM for comprehen-
sive and language-aligned analysis of arbitrary medical X-ray images, we
introduce FluoroSAM, a language-promptable variant of the Segment-
Anything Model, trained from scratch on 3M synthetic X-ray images
from a wide variety of human anatomies, imaging geometries, and view-
ing angles. These include pseudo-ground truth masks for 128 organ types
and 464 tools with associated text descriptions. FluoroSAM is capable
of segmenting myriad anatomical structures and tools based on natural
language prompts, thanks to the novel incorporation of vector quan-
tization (VQ) of text embeddings in the training process. We demon-
strate FluoroSAM’s performance quantitatively on real X-ray images
and showcase on several applications how FluoroSAM is a key enabler
for rich human-machine interaction in the X-ray image acquisition and
analysis context. Information on data, weights, and code is available at
https:// github.com/arcadelab/fluorosam.
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1 Introduction

X-ray imaging is a workhorse imaging modality for diagnostic and interventional
healthcare. There is enormous opportunity for language-promptable, automated
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Fig. 1: FluoroSAM is trained fully in silico with mask and text prompt pairs.
It features a VQ layer that enables training language-aligned training on X-ray
images.

segmentation of X-ray images to enable human-in-the-loop workflows in precision
medicine [2, 3, 7, 11, 12, 24, 25, 28]. Prior efforts have contributed machine learn-
ing (ML) techniques that perform well within a narrow scope of X-ray imaging,
but their fixed design and limited training data limit the potential across the do-
main. Extending these techniques to support additional classes or more complex
queries requires additional data and personnel effort for refitting and retraining
ML models. Recently, foundation models (FMs) – particularly language-aligned
FMs (LFMs) – have emerged as a promising direction for building more flexible
models [1, 4, 15, 16, 18]. FMs are characterized by scalable training strategies,
often accomplished through self-supervision, that enable learning from large, di-
verse data. LFMs, which incorporating text into the training process alongside
images, allow for specification of tasks and classes using natural language. Our
goal is to develop a language-promptable FM for X-ray image segmentation,
enabling potential downstream applications ranging from interactive diagnostic
systems [4, 9] to intelligent human-machine interfaces in image-guided interven-
tions [13, 14].

Promptable segmentation models have become increasingly prominent in re-
cent years, as they are adaptable to both automated and human-in-the-loop
workflows. Rather than predict segmentation masks for a fixed number of classes,
the Segment-Anything Model (SAM) [15] predicts a semantically meaningful
mask for any object in an image based on a prompt, which can be a mask,
bounding box, or point. Trained on a large scale dataset of over 1B masks, the
original SAM is a powerful tool for automated and interactive image segmen-
tation, and it has been successfully fine-tuned on a variety of medical imaging
modalities [18]. Its successor, SAM 2, further lends itself to 3D medical image
segmentation by incorporating a memory bank, increasing the efficiency and
consistency of segmentation over multiple frames [22]. However, to the extent
that SAM and SAM 2 support text prompts, they rely on a previously trained
LFM, CLIP [21], to convert image patches into language-aligned prompts. It is
not immediately clear how to transfer this approach outside of natural images,
on which CLIP was trained. Whereas natural images – and many medical imag-
ing modalities – feature objects with clear boundaries and a nested structure,
X-ray images are transmissive by nature, with many overlapping masks belong-
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Fig. 2: Simulation of the FluroSeg dataset. (a) Virtual C-arm views, shown
here as principle rays, are sampled from a range of both random and near-
standard views, which are determined automatically. (b) The environment out-
puts masks and descriptions for organs and tools.

ing to wholly different objects. Even if a CLIP-like model were available for
the X-ray imaging modality, a single image patch would contain visual features
from multiple objects, and it would be unclear how to distinguish among them.
Further, the data available for training LFMs for X-ray imaging has so far been
limited to diagnostic chest X-ray, where the imaging geometry is relatively con-
sistent and detailed radiology reports can be retrospectively sourced for training
data [2, 4, 8]. By contrast, interventional X-ray features a wide variety of imaging
geometries, anatomies, and objects, with little data available for training.

Recent advances in simulation [25], automated CT image segmentation [27],
and sim-to-real transfer [7, 12] introduce the possibility of training LFMs for
X-ray image segmentation with paired masks and text descriptions. To enable
flexible natural language prompting, we use a vector quantization (VQ) module
on top of a frozen CLIP encoder to provide a more consistent signal to the mask
decoder. In this context, we make two major contributions:

1. The FluoroSeg dataset, a large-scale dataset of 3M synthetic X-ray images,
with mask and text pairs for organs and tools. The dataset is generated
from a wide variety of human anatomies, imaging geometries, and viewing
angles, and it is designed to support training of a language-promptable FM
for X-ray image segmentation.

2. FluoroSAM, a language-promptable variant of SAM, trained from scratch
on FluoroSeg. FluoroSAM features a novel text encoder that enables gen-
eralizable language alignment during training. In this paper, we focus our
evaluation on real fluoroscopic images and chest X-rays, for which ground
truth segmentations are available.
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2 Methods

FluoroSeg Dataset. FluoroSeg is a large-scale dataset of 3 million simulated
X-ray images of the full body, for both diagnostic and interventional exams.
Building on prior work [7, 12, 25, 26], the simulation environment takes as input
a patient model derived from a real CT scan, along with associated segmentations
and descriptions. Computer modeled surgical tools are positioned relative to the
patient anatomy. Where FluoroSeg stands out in this space is in the scalability
of image and ground truth simulation as well as the number of radiological
exams which are replicated in a given environment. By combining volumetric
and mesh-based rendering methods for CT, tool, and ground truth projection,
the FluoroSeg simulation environment is able to generate numerous images with
myriad ground truth segmentations and descriptions in an efficient, scalable
manner. To replicate the variability of real-world X-ray imaging, the simulation
environment samples from imaging geometries and viewing angles that are both
random and near-standard, as determined automatically based on organ meshes.

The simulation pipeline is as follows. We source 1621 high resolution (0.96×
0.96 × 0.5mm) CT scans from the New Mexico Decedent Image Database [5],
including scans of the head & neck region, the torso, and the lower extremity.
Each scan is segmented into 128 organ classes using TotalSegmentator [27], from
which we obtain surface meshes. Depending on the scan type, the simulation en-
vironment selects a range of standard views from which to render synthetic X-ray
images, including the chest, abdominal, shoulder, clavicle, humerus, elbow, fore-
arm, hand, pelvis, femur, sacroiliac joint, knee, tibia/fibula, ankle, foot, skull,
and spine series as defined by [19]. Each view is approximated with minor ran-
dom variations based on the meshes present, so as to capture a variety of imaging
geometries for each exam, suited to both diagnostic and interventional applica-
tions. In addition, fully random C-arm views are sampled by selecting a primary
organ to focus on and then randomly selecting a viewing angle to within 60◦of
the anterior direction. This strategy is reflected in Fig. 2, in which the sam-
pled source positions and principle ray directions can be seen clustered around
near-standard views as well as distributed randomly. For each image, we select a
random subset out of 464 tools to include in the image. These include 111 models
from [17], 296 from GrabCAD, and 57 modeled internally. Each tool is associated
with a comprehensive text description, e.g . “cannulated 110mm screw.” They are
placed along the field of view with random location and orientation. The number
of images sampled per CT varies based on the number of standard views which
are possible to determine for the given anatomy. Images are rendered at a res-
olution of 5122 pixels alongside masks and text descriptions. Using an NVIDIA
A6000 GPU, the simulation environment is able to generate 6.5 ± 15.7 images
per second, depending on the exam, with a total of 2.95M images generated in
about 6 GPU days. The final images are split into training and validation sets
based on a 90/10% split of the base CT scans.
FluoroSAM: An LFM for X-ray Image Segmentation. FluoroSAM is a
language-promptable variant of SAM [15] with support for text, point, and mask
prompts, as shown in Fig. 1. When using only a single prompt, SAM predicts
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Fig. 3: Quantitative results. (a) On interventional X-ray images, FluoroSAM
outperforms its peers even with text-only prompting. (b) On CXRs, FluoroSAM
adapts to hand-annotated lung segmentations despite being trained on synthetic
data. MedSAM [18] includes this task in its training data.

three segmentation maps, often corresponding to the whole, part, or sub-part
of an object, backpropagating only through the branch with the lowest loss. X-
ray images, on the other hand, often contain overlapping projections of many
anatomical and non-anatomical objects. MedSAM [18] mitigates this ambiguity
for other medical imaging domains by only allowing for bounding box prompts.
For X-ray imaging, even if MedSAM were trained from scratch using the Fluo-
roSeg dataset, this approach is undesirable because it (a) still features significant
ambiguity, (b) makes automatic or even non-expert prompting impractical, and
(c) does not lend greater flexibility for human-in-the-loop systems. Language
prompts, on the other hand, enable greater flexibility for both automated and
human-in-the-loop systems, while also reducing ambiguity in prompts.

With access to the text descriptions in the FluoroSeg dataset, it is possible to
train FluoroSAM from scratch with text prompting, using a novel text encoder.
The text encoder consists of a frozen CLIP encoder [21], followed by a multi-
layer perceptron (MLP) with 2 hidden layers and a VQ bottleneck [20], which
outputs the prompt token. While VQ theoretically limits the generalizability of
our framework to new segmentation classes, it expands the generalizability to
new language prompts by reducing the variability from disparate descriptions
for the same object. During training, we use gpt-4o [1] to perform text aug-
mentation [6] on the original descriptions, generating up to 30 comprehensive
and non-comprehensive prompts for each mask. In addition, we procedurally
combine masks from related organs in 38 groups, such as the “left ribs” or “cer-
vical vertebrae,” which are separate classes in the base TotalSegmentator, and
likewise augment their descriptions. Finally, with small probability, we sample
text prompts which are not present in the image, so that FluoroSAM ignores
bad prompts. Because text prompts themselves may be ambiguous, we leverage
the multi-output capabilities of SAM to predict multiple masks for each prompt,
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Table 1: Real X-ray results. (*) indicates that a few (< 10) false negatives
were removed to compute HDD. HDD is in mm for cadaver, pixels for CXRs.

Dataset Model Text Only 2 Points or Box 8 Points

IoU↑ Dice↑ HDD↓ IoU↑ Dice↑ HDD↓ IoU↑ Dice↑ HDD↓

Cadaver SAM — 0.36 0.50 139.1* 0.35 0.48 152.6*
SAM (Box) — 0.42 0.57 86.6* 0.35 0.48 143.9*
MedSAM — 0.41 0.55 76.0 —
FluoroSAM 0.47 0.60 102.8* 0.56 0.69 81.0 0.64 0.77 60.8

CXR SAM — 0.83 0.89 153.9 0.73 0.82 406.8
SAM (Box) — 0.85 0.91 87.6 0.73 0.81 303.9
MedSAM — 0.34 0.48 81.9 —
FluoroSAM 0.50 0.66 90.1 0.67 0.80 53.9 0.81 0.89 31.9

and we select the mask with the lowest loss during training. During inference,
the IOU prediction head enables selection of the best mask for each prompt.

The image encoder consists of a SwinTransformer backbone, which is better
suited to the simulated image size than the original ViT backbone, pre-trained
on ImageNet-22k, with additional pre-training for instance segmentation on a
reduced set of FluoroSeg classes. We use the Swin-S variant for ablation stud-
ies and Swin-L for the final model, with an input image size of 4482. Following
[7, 12], we apply strong domain randomization of the image during training
to facilitate sim-to-real transfer, including coarse dropout, inversion, blurring,
Gaussian contrast adjustment [10], random windowing, and CLAHE histogram
equalization. To accommodate the wide variety of intensity values in X-ray im-
ages, we used a 3-channel input, where the second and third channel window
and level are determined by a K-Means clustering of the pixel values.

During training, for each mask, we run a total of 9 prompts, with 1 text
prompt followed by 8 point prompts randomly selected from the incorrect mask
region. As in [15], we use each previous predicted mask as an additional mask
prompt. We use Dice and focal loss for masks, re-weighting the contributions
from text-only prompting to equal that of all point prompts. Only the losses
from text, point 1, point 8, and an additional random point are backpropagated.
We train FluoroSAM for 10 epochs with a base learning rate of 8 × 10−4 after
a linear warm-up of 20k iterations from 8 × 10−6, reduced by a factor of 10 at
step 200k and 400k. We use a batch size of 16 across 2 NVIDIA H100 GPUs,
with a total training time of 6 days.

3 Evaluation

Synthetic X-ray images. Evaluated on the FluoroSeg dataset, FluoroSAM
achieves a Dice score of 0.59 based solely on text prompting, increasing to 0.70
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Fig. 4: In a limited user study, we observe qualitative results consistent with the
hypothesis that VQ improves segmentation robustness to variable text prompts.
For example, FluoroSAM with VQ was able to correctly segment the femur,
answering the question “What’s the bone next to the hip?”

with 2 points and 0.79 with 8 points. This is a promising result given the chal-
lenge of full body X-ray segmentation based on text prompts.
Real Interventional X-ray images. To evaluate FluoroSAM’s performance
on real interventional X-ray iamges, we collect a dataset of registered X-ray im-
ages with a full torso specimen using a Brainlab Loop-X device. The specimen
consisted of a torso section from mid-femur to T2, excluding the arms, obtained
from a 60-year-old female donor with a living height of 157 cm and weight of
50 kg. Before the study, the specimen was thawed at 4◦C for six days. All fluo-
roscopic images were acquired with navigation relative to a fixed patient array.
To generate complete ground truth masks, we stitched together four navigated
cone-beam CT images acquired with the Loop-X immediately after the study
and projected organ segmentations [27] onto each image. We observe some spu-
rious masks in the ground truth, possibly due to decomposition, so we limit
our evaluation to masks which are at least 2.5% of the image size. In total, the
dataset has 1,741 masks suitable for evaluation.

We find that FluoroSAM effectively segments structures in real X-ray im-
ages from a variety of views. With text prompts, FluoroSAM achieves a mean
Intersection over Union (IoU) of 0.47 and a Dice score of 0.60, as shown in Ta-
ble 1. This includes hard prompts like “fifth right rib” and is sufficient for many
downstream applications in interventional imaging [14]. Additionally, although
VQ result in marginal improvement for text prompts similar to the training set,
we observe qualitative benefits to mask quality for unusual prompts, as seen
in Fig. 4. Fig. 5a shows additional examples with text-only prompting. With 2
points, FluoroSAM outperforms SAM [15] (prompted with points or boxes) and
MedSAM [18] in terms of IoU and Dice score, achieving 0.56 and 0.69, respec-
tively. In terms of HDD, MedSAM holds a slight advantage over FluoroSAM,
possibly because bounding box prompts tightly constrain the mask, whereas
point prompts are more ambiguous. As indicated by the lower IoU and Dice,
MedSAM generally fails to reflect the underlying anatomy and simply fills the
provided box. Moreover, as can be seen in Fig. 3a, point prompting improves
the performance of FluoroSAM, whereas SAM predicts increasingly erroneous
masks.
Zero-shot evaluation on CXR. To show FluoroSAM’s potential for general
diagnostic X-ray image segmentation, we evaluate it on a whole lung segmenta-
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Fig. 5: Qualitative results and downstream applications. (a) Additional
results on real X-ray images, with text prompts not used during training. The
flexibility of text prompting supports a wide variety of downstream applications.
(b) Efficient annotation of X-rays can reduce clinical burden and accelerate real
data annotation. (c) Flexible text-based prompting may lend itself to patient-
facing education, empowering patients to better understand their own anatomy.
In the OR, FluoroSAM can be integrated with robotic C-arms to deliver intel-
ligent positioning (d) and autonomous collimation (e), reducing radiation [14].
These figures use real FluoroSAM predictions on real radiographs.

tion dataset with 1,131 CXRs [2]. Using only text prompts, FluoroSAM provides
a reasonable mask of each lung, achieving a mean IoU of 0.50 and a Dice score
of 0.66 (Table 1). This is despite training on a dataset of synthetic images with
projected masks, which differ systematically from hand-annotated masks [2].

4 Discussion and Conclusion

Thanks to their flexibility, LFMs potentially support a wide variety of au-
tonomous and human-in-the-loop downstream applications. As shown in Fig. 5,
FluoroSAM’s text and point-prompting capabilities lend themselves to multiple
areas within a patient’s healthcare journey, from efficient annotation of diagnos-
tic images to accessible tele-health tools, equipped to interpret natural language
while interacting with exams. In fact, [14] demonstrates how to use FluoroSAM
to equip robotic C-arms with autonomous positioning and collimation capabil-
ities, demonstrating the utility of FluoroSAM’s current performance level. A
mature FluoroSAM may enable chain-of-thought-based X-ray image analysis re-
lated to anatomy in the image [9]. Here, we have demonstrated FluoroSAM’s
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ability to segment a wide range of anatomical and non-anatomical objects in
synthetic, interventional, and chest X-rays. This is a challenging task, as many
organs are not plainly visible in X-ray images, which often contain overlapping
projections of multiple objects. Yet despite relying solely on synthetic data for
training, our model achieves comparable performance with foundation models
trained on large, annotated datasets including real CXR images.

Although the approach here has already yielded promising results, there are
some notable limitations and immediate opportunities for future work. First,
while the FluoroSeg dataset is large, it is still limited in terms of the number of
CTs and the variety of anatomical structures represented. Using the FluoroSeg
simulation pipeline, incorporating additional CT images is computationally in-
tensive but highly scalable using a fully automated pipeline. Additionally, greater
variety could be achieved by incorporating masks from recently released To-
talSegmentator tasks or more specialized datasets, e.g . fracture fragments [23].
Expanding support in this way may require changes in the FluoroSAM archi-
tecture. Although vector quantization of text prompt embeddings qualitatively
improves the robustness of FluoroSAM to variable text prompts (see Fig. 4),
the VQ codebook size constrains the representational power of text embeddings.
This is an acceptable tradeoff in the current context, but other strategies may
be required to support a wider range of anatomical structures while maintaining
robustness to variable text prompts. Ultimately, with the ability to interpret a
wide range of prompts, we envision FluoroSAM will become a key enabler for
human-machine interaction in the X-ray domain, opening up new avenues in
both diagnostic and interventional imaging.
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