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Abstract. Cerebral digital subtraction angiography (DSA) is an Xray-
based imaging modality that provides high-resolution, real-time visuali-
sation of cerebral vasculature, and is an established part of the standard
treatment of stroke patients. Conventionally, DSA data are acquired as
2D images where vessel structures overlap with one another due to the
penetrating nature of X-ray. Given the increasing recognition of the im-
portance of microvasculatures in stroke, there is an unmet need to utilise
DSA to accurately assess microvessels, unobstructed from overlapping
macrovessels. This work proposes a novel Expectation-Maximisation al-
gorithm integrated with anatomy-informed regularisation to disentan-
gle macrovascular and microvascular flow component overlaps in a spa-
tiotemporal Gamma mixture model for DSA. In-vivo experiments across
108 stroke patients demonstrate that the proposed method achieves ro-
bust estimation and provides clear separation of the macrovascular and
microvascular flow components. Based on the proposed method, quanti-
tative microvascular cerebral blood volume was derived from DSA images
and shown to be significantly associated with the current gold-standard
reperfusion metric.

Keywords: Digital subtraction angiography (DSA) - Perfusion - Is-
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1 Introduction

Cerebral digital subtraction angiography (DSA) is an Xray-based, time-resolved
imaging technique to visualise vessels with high spatiotemporal resolution in
real-time [1]. DSA forms the foundation of modern endovascular treatments and
diagnosis of many neurovascular diseases such as ischemic stroke, aneurysm and
vascular malformation, providing real-time visualisation of the vasculature tree
to enable catheter navigation and lesion localisation [1].



2 C. Wu et al.

A primary example of the importance of DSA in clinical practice is the DSA-
guided endovascular thrombectomy (EVT), a first-line treatment for acute is-
chemic stroke caused by large vessel occlusions [2,3]. In EVT, catheters are
carefully navigated, starting from the lower limb, to mechanically extract a clot
from the brain under real-time visualisation of DSA. A final biplane DSA acqui-
sition of the affected arterial territory is routinely performed at the end of the
EVT to assess the extent of reperfusion as a key measure of procedural success
[4]. This final acquisition also aids in early prognostication and provides a mean
to screen for potential intraprocedural complications that may require further
immediate treatment [1]. Despite its usefulness, DSA-based reperfusion assess-
ments have multiple key limitations. Firstly, the current gold standard metric
of reperfusion, Thrombolysis in Cerebral Infarction (TICI) score (Table 1), is
observational and qualitative, and thus subject to inter-rater variability [5], lim-
iting its prediction of functional outcomes [4]. Deep learning-based models to
score TICI have been developed to address the subjectiveness but have not seen
a significantly improved prediction of functional outcomes [6, 7]. Secondly, recent
studies [8-10] have shown that brain tissue may remain occluded at the micro-
scopic level despite apparent normalised macrovascular flow on visual assessment
of DSA. Hence, direct assessment of microvascular perfusion in parenchyma, the
ultimate goal of treatment in ischemic stroke, is required to avoid underdetecting
such important and potentially treatable pathologies.

Table 1. Definition of extended TICI (eTICI) [4], a widely used variant of the TICI
scoring system.

eTICI|Definition

0 |No reperfusion or antegrade flow is observed beyond the occlusion site.

1 |Blood flows penetrate the occlusion but only minimal tissue reperfusion.

2A  |Less than 50% reperfusion in the downstream territory.

2B |More than 50% reperfusion in the downstream territory.

2C |Near complete reperfusion, but delayed flows or small emboli are observed in
the distal downstream territory.
3 |Complete reperfusion.

Deconvolution-based DSA perfusion (DSAP) [11] is a promising method for
assessing post-EVT reperfusion, which processes source DSA data to derive
quantitative perfusion parameters, such as cerebral blood volume (CBV), cere-
bral blood flow (CBF) and mean transit time (MTT). In the first published
attempt to derive DSAP on 66 acute ischemic stroke patients, CBV and CBF
were shown to be weakly associated with TICI scores without reaching statistical
significance [11]. In another proof-of-concept study involving 50 stroke cohorts,
MTT was shown to be associated with post-EVT hemorrhagic transformation
[12]. The robustness of the deconvolution-based DSAP against contrast injec-
tion protocols and sensitivity to cerebral hemodynamics were further validated
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on swine models [13]. Given these initial results that demonstrate the feasibility
of DSAP, there is obvious interest in further clinical validation.

One of the challenges in objectively measuring the TICI score and deriving
DSAP is the anatomical overlap of multiple vascular components in 2D DSA im-
ages. For example, subtle abnormalities of the microvessels, such as no-reflow [8,
10], may be obscured by overlying and surrounding macrovessels. Prior attempt
[11] to mitigate this problem by a mixture model was only able to exclude veins,
while arteries remained and continued to confound the microvascular reperfusion
assessment. Given that microvascular reperfusion is of high clinical importance
[8,10,14], a solution to extract the microvascular component from DSA is in
clear need.

In this work, we describe a novel method that enables robust and accurate
separation of the macrovascular and microvascular flow components for DSA.
Furthermore, we used the resultant microvascular components to produce mi-
crovascular DSAP images on 108 stroke patients and demonstrated their associ-
ation with core lab-assessed TICI, the current gold standard in clinical practice.

2 Theoretical Background

2.1 Pixel-wise Gamma-variate Mixture Model

A pixel-wise gamma-variate mixture model (P-GMM) and the corresponding
Expectation-Maximisation (EM) algorithm (P-EM) were proposed to resolve
overlapping DSA concentration curves [11]. In this work, we implemented P-
GMM and P-EM as a benchmark, described below.

P-GMM assumes that contrast agent particles injected into the blood arrive
at a downstream anatomical location with arrival times that follow a gamma
distribution with shape, «, and scale, 3, assumed to be determined by the local
flow condition. Due to the projected nature of DSA, particles appear in the same
pixel can be originated from various overlapped anatomical components, such as
arteries, capillaries or veins. In a pixel, the event that a particle originated from
a component, Z, appears at time, T', follows a gamma mixture distribution, with
complete probability,

K

P(T=1,2=k©) =[] (m (tlew, )" “ (1)
k=1

where [ is the binary indicator, mixture parameter set ® = {ag, Bk, Tk}, Tk
is the proportion of the k-th component and K denotes the total number of
components.

Resolution of the mixture at the pixel can be achieved by the estimation of
®, which can be sought at the maximum of the complete log-likelihood

L@z =3 Z D 1(Z = k)log (may (slawk, Br)) (2)
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where subscriptions i, k, [ denote the indices of time points, gamma components
and particles, respectively, N denotes the total number of temporal sampling
points and C(t) denotes contrast concentration, which corresponds to the rep-
etition of particle events at t and can be approximated by the inversed pixel
intensity (maximum intensity minus raw pixel intensity).

2.2 Pixel-wise Expectation-Maximisation Algorithm

Given observed data, C(t), measured at a pixel, and the marginal log-likelihood
L1 (©|T), measured at time, T, the P-EM algorithm iteratively finds a local
log-likelihood maxima, following the E-step and the M-step.

E-step: Define Q (©|@(™)) as the expected value of the log-likelihood of ©,
with respect to the conditional distribution of Z, given T and ®(") at the m-th
step:

K
SOt 1og (ry (tilow, Br)) (3)

i=1 k=1

] =

Q (@‘@(m)) =

where zf;n) is the conditional expectation of I (Z; = k), which indicates the I-th

particle at ¢; coming from the k-th component, estimated given ©(™):

A (o 54”)

I (6l )

2 = P(Z = klt:) = (4)

M-step: Find ©®(™+1) to maximise the expected value of the log-likelihood

O™+t — argmax Q (@,Q(m)) , (5)
e
where © = {ay, Bk, ik =1,...,K}.

2.3 DSA Intensity Reconstruction

Reconstructed DSA intensity of the k-th component in a pixel is given by:
Cr (t:) = STy (ti|&kaBk) ) (6)

where S = Zfil C(t;) is the scaling factor and * denotes estimation.

3 Theory

3.1 Neighbourhood-wise Gamma Mixture Model

To improve the estimation of @, this work proposes neighbourhood-wise gamma
mixture model (N-GMM), a modification of P-GMM, that expands the formal-
ism from individual pixels to their neighbourhoods (Figure 1).
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Fig. 1. Illustration of P-EM and N-EM. (A) Frames selected from a lateral DSA run.
The white box indicates a 5 x 5 neighbourhood. (B) P-EM fits the P-GMM to the
central pixel, using only the data of that pixel. (C) In contrast, N-EM fits the N-GMM
of the neighbourhood to solve for the parameters of the central pixel. Panels display the
intensities at corresponding locations in the box. Gray bars represent pixel intensity
data and curves represent the reconstructed intensities.

Based on the observation that vascular flow patterns are highly similar in
an anatomical vicinity, N-GMM assumes that gamma parameters oy, 8 of the
k-th components are identical in a pre-defined neighbourhood. Where pixels
are indexed by p € {1,..., P}, the spatially varying contribution is defined by
weights, Tp, across the pixel neighbourhood. Thus, for the parameter set of a
neighbourhood, ® = {ay, Bk, Ty}, the log-likelihood becomes

P N Cp(t)

L (O|T,Z) =log
p=11

K
H (Tpry (tilag, Br)) En=h) (7)
=1 k=1

3.2 Neighbourhood-wise Expectation-Maximisation Algorithm

The N-GMM allows a designated EM algorithm-based estimator, N-EM, to in-
corporate prior knowledge from the neighbourhood. Based on Equation 7, an
EM algorithm solution was proposed, with modifications to the optimisation as
shown below.

Vessel Segmentation: a segmentation mask was provided to the optimi-
sation to identify “tissue pixels”, P;, which do not contain any apparent vessel
structure in the DSA. Frangi filtering [15] was applied to each frame to obtain
a set of scores for each pixel. A pixel is then classified into P; if its maximum
score is below a threshold, Fjj,.

Constraints to Tissue Pixels: To employ the constraint that GMM will
degrade to a single gamma model in tissue pixels, a sufficiently low, empirical
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upper limit, U = 0.01, is applied to the proportion weight of all macrovascular
components, Ky, in those pixel. That is, 7, < U for p € P, and k € K.
Regularisation with Respect to the Microvascular Component: To
account for the observation that microvascular perfusion varies smoothly in the
brain, a regularisation term, which represents the intra-neighbourhood variance
of the microvascular component intensities, is introduced to the optimisation:
2

R= Z Z O Tpk P Z C Tpk ) (8)

where ) is the regularisation parameter and k,, is the microvascular component.
Spatial Gaussian Weighting: A Gaussian weighting kernel w (x,y) =
exp {— (x2 + yz) /(202)} / (27r02) is applied to the neighbourhood in the ob-
jective function, where x, y are the 2D distances with respect to the central pixel
and o2 is the variance.
Optimisation: Incoporating the above modification, the complete objective
function for the N-EM algorithm becomes

P N K

Q(8107) = 333" w, Cy(ti) =i log (7w (tila, By)) + R,
p=11i=1 k=1
m m 9
T <mo~a 5" .
ik ZKK:szgn)V (magm)’ lgm)).

The optimisation formula is

eimtl) — arg max () (@, ('-)(7”)) ,
)
omk=1, Vp, 0<mp<U, peP,keKy; (10)
k

0<mr <1, Vpk; 0<ap, Vk; 0< Br, Vk,
where © = {ay, B, s k=1,...,K,p=1,...,P}.

4 Methods

4.1 Implementations

We empirically defined the neighbourhood as a square region of 81 pixels for
N-GMM, and set ¢ =4, A = 1072, and K = 3, allowing for the presence of arte-
rial (macrovascular), venous (macrovascular) and parenchymal (microvascular)
flows. For vessel masking, Frangi’s 8 = 0.8, ¢ = 100, 0 = {1,2}, F};, = 0.1. N-
EM optimisation was initialised by K-means and solved using the interior-point
method in MATLAB (2024b). The EM iteration terminated when |Q(™+1) —

™| < 5 x 107* or after 30 iterations. As a referenced method, P-GMM was
implemented with parameters matching the N-GMM counterpart where appli-
cable.



Resolving Overlaps in DSA for Cerebral Reperfusion Assessment 7

4.2 Experiments

We tested N-EM on post-EVT bi-plane DSA from 108 patients diagnosed with
internal carotid artery or M1 occlusion (eTICI 2A: n=7; 2B: n=>51; 2C: n=26;
3: n=24) in EXTEND-IA TNK Part 1 & 2 clinical trials. DSA runs with a
varying acquisition rate were upsampled to the highest rate (median = 4 fps)
using linear interpolation. All image sizes were resampled to 224x224. We used
the coefficient of determination, R?, to measure the goodness of fit in each pixel,
given as

2, 2u4(Ct) - C(t:))?
T sew - >, Ct;)/N)2 (11)

To validate the potential clinical applicability of N-EM, we derived the CBV
corresponding to the separated microvascular component based on deconvolution
[11], where the arterial input function was measured from the internal carotid
artery in the macrovascular component image. The mean CBV value (mCBV)
was calculated over the middle cerebral artery (MCA) territory. Frontal mCBV
and lateral mCBV were each fitted to extended TICI (eTICI) using ordinal
regression, where the association was assessed by Wald test.

5 Results

Both P-EM and N-EM achieved good fits to the data, as indicated by high R?
values (P-EM: R? = 0.8740.07, N-EM: R? = 0.81+0.09). However, artifacts in
regions with vessel overlaps are observed in the microvascular images produced
by P-EM (Figure 2C), whereas they do not appear in the images derived from
N-EM (Figure 2E).

CBV computed from the deconvolution of the N-EM microvascular image
contains minimal vascular contribution (Figure 3A). Ordinal regressions show
that core-lab eTICI scores are significantly associated with both frontal mCBV
(p<0.001, Figure 3B) and lateral mCBV (p=0.015, Figure 3C).

6 Discussion and Conclusion

N-EM achieves visually improved separation. Artifacts in P-EM (Figure 2C)
might have originated from two causes. Firstly, the gamma probability density
function is intrinsically flexible. As a consequence, while P-EM can successfully
separate arterial and venous overlaps with K = 2 in P-GMM [11], it might be-
come susceptible to overfitting when K increases to 3 to include the additional
parenchymal component. Secondly, solving P-GMM with substantial overlaps as
an inverse problem might be ill-conditioned, prohibiting reliable solutions under
the influence of noise. In contrast, N-EM presents smooth microvascular im-
ages (Figure 2E). N-EM extends the framework from a pure temporal domain
to a spatiotemporal domain to gather more data for the mixture model. While
DSA intensities collected from adjacent pixels might exhibit various shapes, the
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Fig.2. (A) Raw images from six DSA examples. (B) Reconstructed macrovascular
images, each was the superposition of two corresponding macrovascular gamma com-
ponents, and (C) recontructed microvascular images obtained from P-EM. (D) Recon-
structed macrovascular images and (E) microvascular images from N-EM. We calcu-
lated R? according to Equation 11 and averaged the values over the MCA territory.
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Fig. 3. (A) Representative microvascular CBV image (unitless). The black outline
indicates the MCA territory. Box plots showing (B) frontal mCBV and (C) lateral
mCBYV in eTICI groups. The eTICI score is significantly associated with coronal mCBV
(p<0.001) and sagittal mCBV (p=0.015).
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underlying gamma distributions may share very similar parameters. Such in-
creased data heterogeneity could mitigate overfitting. Moreover, vessels in DSA
as a distinctive image feature can be recognised by well-developed computer vi-
sion techniques, such as Frangi filtering. N-EM encapsulates measurements in
vessel-free pixels as unobstructed observations of local microvascular flows to
provide prior information for neighbouring pixels, enabling resolution of GMM,
even in the presence of substantial overlaps.

The association between mCBV and eTICI suggests that DSA perfusion may
also provide supplementary prognostic information for EVT. MCBYV is a quan-
titative measurement exclusive to microvascular perfusion, and therefore could
be able to overcome inter-rater variability and vessel-centric evaluation, which
are the major drawbacks of TICI. To further improve microvascular perfusion
mapping, future studies can focus on temporal perfusion parameters to identify
delayed reperfusion and use image-based analysis to assess local lesion signs.

In this work we have presented N-EM, a method that successfully resolves
macrovascular and microvascular flow overlaps in DSA. For the first time, we
employed the separated components resulted from N-EM to generate DSA mi-
crovascular CBV maps, demonstrating its association with core-lab e TICI scores,
showing the potential of N-EM in quantitative evaluation of post-EVT outcome
for stroke patients.

Disclosure of Interests. The authors have no competing interests to declare that
are relevant to the content of this article.
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