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Abstract. The vision-language capabilities of multi-modal large lan-
guage models have gained attention, but radiology report generation still
faces challenges due to imbalanced data distribution and weak alignment
between reports and radiographs. To address these issue, we propose
TRRG, a stage-wise training framework for truthful radiology report
generation. In the pre-training stage, contrastive learning enhances the
visual encoder’s ability to capture fine-grained disease details. In the
fine-tuning stage, our clue injection module improves disease perception
by integrating robust zero-shot disease recognition. Finally, the cross-
modal clue interaction module enables effective multi-granular fusion of
visual and disease clue embeddings, significantly improving report gen-
eration and clinical effectiveness. Experiments on IU-Xray and MIMIC-
CXR show that TRRG achieves state-of-the-art performance, enhancing
disease perception and clinical utility.

Keywords: Radiology Report Generation - Large Language Model -
Chest X-ray

1 Introduction

The rapid development of machine learning, combined with the proliferation of
large-scale public datasets, has driven significant progress in automated radiol-
ogy report generation. This technology aims to assist radiologists by reducing
workload, minimizing diagnostic errors, and streamlining clinical workflows. Ra-
diology report generation involves producing detailed and structured textual
descriptions for medical images such as X-rays, MRI, and CT scans. These re-
ports must not only convey normal findings, but also capture subtle abnormal
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observations—such as disease categories, lesion locations, and severity indica-
tors—that are essential for clinical decision making. Compared to general image
captioning [24, 18, 21, 19, 10], radiology report generation presents unique chal-
lenges, including sparse and noisy disease supervision, a need for fine-grained
abnormality localization, and the risk of generating clinically irrelevant or in-
complete descriptions. Many recent encoder-decoder methods [12, 4, 30, 35, 28,
36, 11, 16] are limited by their reliance on coarse-grained visual-text alignment
and struggle to achieve clinically meaningful disease perception, restricting their
reliability in real-world applications.

Recent advances in multimodal learning and high-resolution feature represen-
tation further highlight opportunities and challenges in this field. For instance,
FusionMamba [34] proposes dynamic feature enhancement for multimodal im-
age fusion, offering insights into how multi-source feature interaction can enrich
downstream tasks, including radiology reporting. Additionally, pre-training on
high-resolution X-ray images, as studied in [27], demonstrates that rich visual
detail is crucial for capturing subtle pathologies and improving diagnostic model
performance. These developments suggest that more effective report generation
frameworks should leverage advanced cross-modal interaction mechanisms and
high-resolution representations to better capture disease-relevant clues. To ad-
dress these challenges, we introduce TRRG, a novel framework for radiology re-
port generation that integrates disease clue injection with powerful multi-modal
learning. TRRG employs a stage-wise, cross-modal strategy, incorporating con-
trastive pretraining to refine the disease sensitivity of vision encoders. In the
fine-tuning stage, we inject visual disease tokens and semantic clue embeddings
to provide richer and more targeted supervision. A dedicated cross-modal clue
interaction module further aligns visual and textual features, enabling the model
to attend to clinically relevant image regions and facilitating more precise disease
characterization. Inspired by the findings of [34], our approach dynamically en-
hances multi-source clues for robust report generation. Furthermore, motivated
by [27], we utilize high-resolution representations to ensure subtle pathologies are
effectively captured and described. We also propose a disease-aware consistency
loss, which enforces alignment between vision and clue embeddings, reinforcing
the model’s ability to generate accurate, disease-focused reports.

We evaluate TRRG on the IU-Xray [6] and MIMIC-CXR [9] datasets, demon-
strating that our approach surpasses existing methods in both language gen-
eration quality and clinical relevance. Extensive ablation studies validate the
individual contributions of disease clue injection, cross-modal interaction, and
consistency loss.

Our main contributions are summarized as follows:

— We propose TRRG, a disease clue injection enhanced large language model
for radiology report generation, which addresses coarse-grained visual-text
alignment and empowers the model to achieve fine-grained, disease-aware
perception.

— We develop a cross-modal disease clue interaction module that effectively
integrates visual embeddings and disease clue embeddings, guiding large
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language models to generate higher-quality, clinically meaningful radiology
reports.

— Drawing on recent findings in multimodal fusion [34] and high-resolution
pre-training [27], our framework leverages dynamic feature enhancement and
detailed visual representations to further boost clinical performance.

— Comprehensive experiments on [U-Xray and MIMIC-CXR confirm that TRRG
achieves state-of-the-art results in both language generation quality and clin-
ical reliability, with ablation studies clarifying the impact of each core mod-
ule.

2 Methods

The proposed TRRG follows a two-stage training process. In the pre-training
stage, we enhance disease-aware fine-grained alignment between radiographs and
reports using sentence-level contrastive learning, improving the vision encoder’s
disease perception. In the fine-tuning stage, the clue injection and cross-modal
clue interaction modules further refine language generation and clinical effective-
ness by aligning visual and disease clue embeddings. These components signifi-
cantly boost both alignment and report quality. The details of TRRG are shown
in Fig. 1.

Fine-tuning Stage: Clue Enhanced Instruct Tuning on Radiology Report Generation
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Fig. 2. During fine-tuning, the frozen visual and clue encoders inject disease clues
via the clue injection module, enabling cross-modal interaction, while a frozen large
language model undergoes instruction-based fine-tuning for medical report generation.

2.1 Stage 1: Disease-aware Cross-modal Fine Grained Alignment

Recent studies [33, 25] have shown that pre-
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medical image-text pairs can achieve human-
level accuracy in zero-shot disease classifica-
tion tasks. Inspired by this, we adopt a stage-
wise training approach. In the pre-training
stage, we randomly sample sentences from ra-
diology reports to train the model, thereby
enhancing the vision encoder’s representation
capability and supporting robust disease clue
prompting.

Given an image-text pair (I,T), where
T = {Th,...,T;} and each T; is a sentence
from the report, the image is encoded as v = {vgs,vi,...,vp} € R(+1)xd
by a transformer-based vision encoder, and a randomly sampled sentence T;. is
encoded as t = {tos,t1,...,tm} € R(m+1xd by 5 BERT-based model, where
"cls" denotes the pooling token. We use the "CLS" tokens, i.e., vy and t.s, as
the global representations, i.e., v .= Ej;,q(I) and t = E;(T}.), with T, being a
randomly selected sentence.

Contrastive loss is then computed to align pooled image and text embeddings.
Specifically, for paired image and text embeddings {v/,t;}2Y;, where N is the
batch size and 7 is a temperature parameter, the loss is:

r— (1o exp(o(t;, v})/T) exp(o (v}, t;)/7) ) )
( gz + (1)

~ p log — p
j=16xp(0(ti, V) /7) > j=1 exp(o(vi,t5)/7)

This contrastive learning stage improves the disease-oriented visual representa-

tion, benefiting subsequent report generation.

2.2 Stage 2: Clue Enhanced Instruct Tuning on Radiology Report
Generation

In this stage, we enhance report generation by integrating disease clue prompts.
The image is first encoded as v, = Eimg(x), then mapped to the visual space
via a trainable mapper: vq = Wv, + b, where W is the trainable weight. The
disease visual expert token is computed by averaging patch tokens, i.e., v s =
%Z?:l v;, with each v; € R'*?, This yields both the disease visual embedding
vg € R"*¢ and the expert token v € R*™*4.

For the clue injection module, following [7], we construct disease clue prompts
using templates such as: Clue: <severity> <disease> at <location>. We
manually define templates for m common diseases (e.g., opacity, pneumonia) and
encode each clue prompt with a frozen text encoder into ¢’ = {Ceis,C1, ..y Cr} €
RO+Dxd where r is the prompt length and i = 1,...,m.

To measure the relevance between visual and clue tokens, we compute clue
weights by w; = softmax(vs - ¢;,) for i = 1,...,m, where w € R™™ and ¢!, is
the expert token of the i-th clue. We then select the top-k clues with the highest
weights as final inputs: ¢; = {c’ | i € topk(w, k)}, where topk(w, k) returns the
indices of the k largest weights. The resulting set ¢, € RF¥*"*? serves as the
disease expert clues injected into the model for generation.
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Cross Modal Clue Interaction For multi-disease clues ¢, € R¥*7*4  these
clues align with frozen vision encoder representations but lack interaction with
visual mapper features. To address this, we propose a Cross-Modal Clue Inter-
action Module to enhance generative representations and facilitate cross-modal
interaction. Given the typically larger number of disease clue tokens, we intro-
duce learnable queries to manage input redundancy. Additionally, we propose a
Disease Clue Consistency Loss to maintain attention on disease clue embeddings
and provide supervision for fine-tuning large language models. The multimodal
module employs a two-stream architecture with self-attention for intra-modal
interaction and cross-attention for aligning textual clues with visual representa-
tions, ensuring cross-modal consistency. For visual embedding, vq4 = {v1,..., v, },
disease clue embedding c, € R¥*7*4 We flatten the disease clues into clue to-
kens ¢, = {c1,...,C(xxr)}, Where c; € R'*?, Next, both visual embeddings and
clue embeddings are fed into linear projection layer and atttention layer:

V' = Attn(QY, KV, V"), C’ = Attn(Q°, K¢, V°), (2)

where V', C’ are visual embeddings and disease clue embeddings after multi-head
self attention layer. Next, we utilize learnable tokens E = {F, Ea, ..., E.} as a
common feature space to establish associations between the visual and textual
modalities, where L represents the number of learnable tokens. In detail, we
employ a scaled dot-product attention layer to calculate the correlation between
the learnable tokens E and the mapped visual tokens EV. We perform the same
operation on learnable queries and disease clue embeddings and obtained clue
tokens E°. This process can be expressed as:

EY = FFN(Attn(E®, V', V')),E¢ = FFN(Attn(E¢, C', C’)). (3)

Furthermore, since disease clues are often sparse during cross-modal interaction,
to enhance the consistency between visual tokens and clue tokens and improve
effective supervision signals during radiology report generation, we propose a
disease-aware consistency loss. Our disease-aware consistency loss is calculated
as:

K ; .
1 v. B¢
Lpo=-=3 2 L (4)
K 2 BT

We calculate the similarity between visual tokens and clue tokens and aim to
maximize the alignment between visual and textual tokens. The disease-aware
consistency loss effectively endows visual tokens with the ability to perceive
diseases.

Optimization Objective Our overall objec-
tive function is:
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Fig. 3. Architecture of Cross
Modal Clue Interaction Module
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Table 1. Comparisons of the proposed TRRG with previous studies on the IU X-
RAy and MIMIC-CXR test set with respect to language generation (NLG) and clinical
efficacy (CE) metrics. Best results are in bold.

Dataset Model NLG Metrics CE Metrics
BLEU-1 BLEU-2 BLEU-3 BLEU-4 ROUGE METEOR CIDEr|Precision Recall F1
HGRG-Agent [14] | 0.438 0.298  0.208 0.151  0.322 - 0.343 - - -
KERP [11] 0482 0325 0.226 0.162 0.339 - 0.280 - - -
R2Gen [4] 0.470 0.304 0.219 0.165 0.371 0.187 - - - -
PPKED [16] 0483 0315 0.224 0.168 0.376 0.187  0.351 - - -
GSK [35] 0.496 0.327 0.238 0.178 0.381 - 0.382 - - -
R2GenCMN (3] 0475 0309 0.222 0.170  0.375 0.191 - - - -

1U X-Ray

METransformer [31]| 0.483  0.322  0.228 0.172  0.380 0.192  0.435 - - -
TRGG (Ours) 0.482 0.302 0.217 0.151 0.377 0.209 0.405 - - -
M2Transformer [5] | 0.332 0.210 0.142 0.101 0.264 0.134 0.142 - - -
R2Gen [4] 0.353  0.218 0.145 0.103  0.277 0.142 - 0.333  0.273 0.276

PPKED [16] 0.36 0.224 0.149 0.106  0.284 0.149  0.237 - - -
GSK |[35] 0.363 0228 0.156  0.115  0.284 - 0.203 - - -
R2GenCMN (3] 0.353  0.218 0.148 0.106  0.278 0.142 - 0.334 0.275 0.278
MIMIC-CXR. MSAT [29] 0.373  0.235  0.162  0.120  0.282 0.143  0.299 - - -
METransformer [31]| 0.386  0.250  0.169  0.124  0.291 0.152  0.362| 0.364 0.309 0.311
DCL [13] - - - 0.107  0.284 0.150  0.281 | 0.471 0.352 0.373
R2GenGPT (32| 0.365 0.237 0.163  0.117  0.277 0.136  0.145| 0.341 0.312 0.325
FGIRG [2] 0379 0234 0.154  0.106  0.285 0.162 - - - -
R2GMMN |[22] 0.396 0.244 0.162 0.115  0.274 0.151 - 0.411  0.398 0.389

TRGG (Ours) 0.436 0.298 0.213 0.157 0.336 0.167 0.219 | 0.403 0.399 0.393

3 Experiment

3.1 Datasets and Evaluation Metrics

IU-Xray [6] is a widely recognized bench-

mark dataset for radiology report generation.

The dataset consists of over 7,470 chest X-ray

images and 3,955 corresponding radiology re-

ports manually annotated by expert radiologists. MIMIC-CXR (9] is a dataset
comprising 64,588 patients collected at the Beth Israel Deaconess Radiology Cen-
ter between 2011 and 2016. It includes 77,110 chest X-ray images and 227,835
corresponding free-text radiology reports. To ensure experimental fairness, we
replicated the experimental settings of previous studies. This led to a train-
ing set of 222,758 samples, with validation and test sets comprising 1,808 and
3,269 samples, respectively. Based on previous research, we evaluate our pro-
posed radiology report generation model from two perspectives. 1) Evaluation
of Language Generation Quality (NLG Metrics): Utilizing commonly used lin-
guistic evaluation metrics such as BLEU [20], Rouge-L [15], and CIDEr [26].
2) Clinical Effectiveness Metrics (CE Metrics): We employ NLP text disease
labeler ChexBERT|23] for text classification. We extract 14 common diseases
from the generated reports and reference report. Precision, recall, and F1 score
are used to assess performance in terms of clinical efficacy.
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4 Main Results

Implementation Details We utilized Mistral-7B [8] as the language model,
Swin-Transformer [17] as the vision encoder, and ClinicalBERT [1] for text en-
coding during pretraining. Fourteen common diseases were selected for template
construction, with a maximum of three injected disease clues (K=3), and both
visual and text embeddings set to 1024 dimensions. The cross-modal cue in-
teraction module adopted an 8-head attention mechanism, each with a single
attention and cross-attention layer. Training was conducted on four NVIDIA
A40 48GB GPUs using the MIMIC-CXR dataset (5 epochs) and IU-Xray (20
epochs), with a batch size of 8 and a learning rate of le-4.

We benchmarked our model against state-of-the-art image captioning and
radiology report generation methods, including R2Gen [4], R2GenCMN [3], PP-
KED [16], R2GenGPT [32], FGIRG [2], and R2GMMN [22]. As shown in Ta-
ble 2.2, our model achieves superior NLG performance, particularly on MIMIC-
CXR, benefiting from the larger dataset for enhanced pretraining and cross-
modal alignment. Although METransformer [31] achieves higher CIDER, scores
due to its optimization strategy, our model excels in language consistency, se-
mantic richness, and accurate radiology report generation. In clinical efficacy
evaluation, our model outperforms fine-tuning methods such as R2GenGPT,
achieving average accuracy, recall, and F1 scores of 0.403, 0.399, and 0.393,
respectively, surpassing R2ZGMMN and demonstrating improved disease recog-
nition and report accuracy.

Ground-Truth: There is no clear Baseline: Frontal and Ours: The cardiomediastinal Top 3 Clue Weights:
radiographic change over the past lateral views of the chest. silhouette and pulmonary R

11 days. Bilateral pleural The pulmonary vasculature | vasculature are within normal - e
effusions moderate on the right is normal. The lungs are limits . Pneumonia at the right .

small on the left and callus clear without consolidation, lung base is not excluded. there

pulmonary nodules are effusion or pneumothorax. is no focal airspace consolidation o

unchanged. Confluent The cardiomediastinal pleural effusion or pneumothorax . | . .
opacification at the base of the silhouette is normal. there is no acute bony abnormality. | .- ST EEEECEEEE

right lung is probably atelectasis,
pleural mild pneumonia is
difficult to exclude.

Ground-Truth: Since the prior Baseline: Frontal views of Ours: the heart size is normal. the | Top 3 Clue Weights:
study, there is no change in large the chest. Left chest wall mediastinal and hilar contours are

right pleural effusion and pacing device seen with normal. Low lung volumes with . s
associated atelectasis. Heart size leads in the right atrium. The | probable bibasilar atelectasis.

and mediastinum are unchanged lungs are clear, and the There is no pneumothorax.

including cardiomegaly. cardiomediastinal silhouette | Pulmonary vascularity is normal.
eris and hila are normal. pleural | there are small bilateral pleural

effusions show in in right effusions. Cardiomegaly is

lung zone. unchanged

Fig. 4. We compare the generated results of the base model and the TRRG (Ours)
with the ground truth, highlighting key information using colored fonts. Our model
effectively generated specific descriptions tailored to diseases.

4.1 Ablation Study

Effectiveness of each component. We constructed our baseline model, "BASE,"
by fine-tuning only the visual mapper. We then introduced a disease clue in-
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jection module (DCI), a cross-modal clue interaction module (CMCI), and a
disease-aware consistency loss function (DAL). The " + " symbol in Table 2
represents the effects of adding these components. Each module significantly
enhances performance, with systematic partitioning ensuring comparability de-
spite some experimental randomness. Our proposed modules achieve 14.5%,
15.8%, 13.6%, 11.7%, and 9.9% improvements in BLEU-4, ROUGE-L, ME-
TEOR, CIDEr, and F1 scores from "BASE" to TRRG, validating our approach.

Table 2. Ablation study of different componet we proposed, "DCIL," "CMCI," and
"DAL" respectively denote the Disease Clue Injection module, Cross-Modal Clue In-
teraction module, and Disease-Aware Loss function.

Models [U-Xray
BLEU-4 ROUGE METEOR CIDER F1
BASE 0.156  0.370  0.194 0.387 -
BASE+DCI 0.152  0.365  0.197 0.390 -
BASE+DCI+CMCI|0.147  0.372  0.205 0.402 -
TRRG 0.151  0.377  0.209 0.405 -
MIMIC-CXR

BASE 0.137  0.290  0.147 0.196 0.354
BASE+DCI 0.142 0.311  0.156 0.207 0.384
BASE+DCI+CMCI|0.159  0.324  0.162 0.211 0.387
TRRG 0.157  0.336  0.167 0.219 0.393

4.2 Qualitative analysis

We conduct a qualitative analysis to validate the effectiveness of the proposed
model. As depicted in Fig 4, our disease clues and probabilities are highlighted
using colored fonts. Compared to the base model, our proposed model tends
to include more disease-related content with injected clues during the process
of generating radiology reports. This observation confirms that our model has
higher clinical reliability. In the second example, the conventional model hinted
at the presence of auxiliary devices in the image, but our model failed to provide
relevant descriptions. This indicates some limitations of our proposed approach,
which may lead to an overemphasis on disease-related content in certain cases,
thereby compromising findings and obscuring the expression of basic descrip-
tions.

5 Conclusion

In this paper, we propose the TRGG for truthful radiology report generation
based on fine-tuning large language models with injected disease cues. Our pro-
posed stage-wise training strategy effectively promotes cross-modal alignment
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between radiography and reports. The clue injection module and cross-modal
clue interaction module proposed by us can effectively facilitate the seman-
tic representation of diseases and cross-modal alignment. Experimental results
demonstrate the superiority of our approach. Future research directions include
developing a generalizable method for medical image report generation that can
be applied across various medical imaging text report datasets, enabling further
extension to heterogeneous modalities such as CT, MRI, and Ultrasound.
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