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Abstract. Surgical scene reconstruction from endoscopic video is cru-
cial for many applications in computer- and robot-assisted surgery. How-
ever, existing methods primarily focus on soft tissue deformation while
often neglecting the dynamic motion of surgical tools, limiting the com-
pleteness of the reconstructed scene. To bridge the aforementioned re-
search gap, we propose T2GS, a novel and efficient surgical scene recon-
struction framework that enables efficient spatio-temporal modelling of
both deformable tissues and dynamically interacting surgical tools. TGS
leverages Gaussian Splatting for dynamic scene reconstruction, and it
integrates a recent tissue deformation modelling technique while most
importantly, introduces a novel efficient tool motion model (ETMM).
At its core, ETMM disambiguates the modelling process of tool’s mo-
tion as global trajectory modelling and local shape-change modelling.
We additionally propose pose-informed pointcloud fusion (PIPF), holis-
tically initialized of tools’ gaussians for improved tool motion reconstruc-
tion. Extensive experiments on public datasets demonstrate T>GS’s su-
perior performance for comprehensive endoscopic scene reconstruction
compared to previous methods. Moreover, as we specifically design our
method with efficiency in concern, T2GS also showcases promising re-
construction efficiency (3mins) and rendering speed (71fps), highlight-
ing its potential for intraoperative applications. Our code is available at
https://gitlab.com/nct_tso_public/ttgs.
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1 Introduction

Information about tool and tissue interaction in surgical scenes can benefit many
downstream tasks, e.g., VR-based surgical training[2], surgical skill assessment[1120]
and visual enhancement|[I2]. In order to achieve a more comprehensive revelation
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of the tool-tissue interaction, it is necessary to model the dynamics of both the
tissue and the tool.

Recent advancements in dynamic surgical scene reconstruction have seen a
shift from conventional methods[8] to modern learning-based approaches|21],
such as NeRF [II] based methods and Gaussian splatting[7] technique, as these
solutions greatly enhance the compactness of the representation, meanwhile fa-
cilitate high fidelity novel view rendering. Pioneer works along this path include
EndoNeRF[I4] and EndoSurf[23], they require high overhead for training and
showcase slow rendering. Despite efforts[I9I8] for acceleration, the efficiency of
these group of methods is not comparable with the Gaussian spaltting based
alternatives[21IBIT0JT6]. Among these GS methods, at core they leverage vari-
ous 4D modeling techniques[QIT522] to effectively reconstruct deforming tissue
whereas ignoring interacted surgical tools, leading to incompletely reconstructed
scenes. Our preliminary studies confirm that current methods are inadequate for
tool motion modelling task, highlighting the need for specialized solutions.

On the other hand, proper Gaussian initialization is critical for convergence
and reconstruction quality in 3DGS [7], while conventional SfM[I3] methods
assume scene rigidity thereafter being limited for surgical usage. Despite the
efforts|2T5T0] in Gaussian initialization adapted for surgical scene, they focus on
tissue reconstruction rather than tools, being improper to use for tools gaussian
initialization, another critical component to concern in surgical scenes.

Therefore, to address the current limitation, we propose the framework T?GS
to model dynamics from both tissue and surgical tools. Our main contributions
include:

— The first 4DGS-based framework with special designs for tool motion recon-
struction and Gaussian initialization, that help to holistically reconstruct
surgical scenes.

— Efficient Tool Motion Modelling module (ETMM), composed of Pose-guided
Global Trajectory Modelling (P-GTM) and Local shape-change Modelling
(LSM), together effectively model the deformation field of surgical tools.

— Efficient and high-quality reconstruction of comprehensive surgical scenes
compared with other state-of-the-art methods, especially regarding tool re-
construction quality.

2 Method

2.1 Overview

As shown in Fig (a) of T2GS pipeline, during training stage, our framework
starts with separate Gaussian initialization for tissue and individual tool, for
the later we propose PIPF for holistic tools Gaussian initialization (Sec.
Then tissue deformation and tool motion field are modelled separately with
previous state of art tissue reconstruction method(Sec and our proposed
tool motion model ETMM (Sec/2.4)). Then the composed gaussians of tissue and
tools are jointly rendered (Sec to obtain the color image and depth map,
being supervised with groundtruth correspondence (Sec.
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Fig.1: Overview. In Fig.(a), we introduce the proposed complete pipeline, con-
taining: 1) Gaussian initialization. 2) Deformation field modelling. 3) Joint ren-
dering of composed gaussian. 4) Supervision. We detailed ETMM in Fig.(b).

2.2 Preliminaries

3D Gaussian Splatting (3DGS). In 3DGS[7], a scene is represented by a
dense set of 3D Gaussians {G;}, each with a center pu; € R3, a decomposed co-
variance 3; = R; S?R;r represented as rotation R; and scaling S, per-Gaussian
color SH; and opacity ;. Under a view transformation and projection, each 3D
Gaussian projects to an elliptical 2D splat. The final color at a pixel p is obtained
by alpha compositing these splats in front-to-back order via alpha blending:

Cm) = > (o [T~ an)) ey, (1)

J k<j

where a; and c; are the projected opacity and color of Gaussian G;. The depth
image and the opacity map can be derived using analogous alpha blending formu-
lations. By jointly optimizing all Gaussians’ positions, shapes, and appearance,
this method enables efficient and realistic rendering of 3D scenes.

Flexible Deformation Modeling. FDM|21] are proposed to be coupled with
3DGS and facilitate superior fast reconstruction of deforming tissue surface. We
keep this method for the tissue reconstruction component in T2GS framework.
In addition, we adapt it to facilitate local shape-change modelling (LSM) of
surgical tools in our proposed tool motion model ETMM, as later detailed in
Sec[2:4] The FDM framework represents temporal deformations through a set of
learnable basis functions that modulate Gaussian attributes. For each attribute
type ¢ € {u, R, S}, a deformation function 1% (t) is defined as a linear combi-
nation of learnable basis functions: ¥?(t) = Zle w,‘ka(t) where {By(t)}5_,
are the basis functions and {w,‘f}szl are learnable weights. The final Gaussian
attributes G(t) at time t are computed by adding these deformation functions to
its canonical attributes: u(t) = p +*® R(t) = R+ ¢R(t), S(t) = S + ¢S(t)
where p, R, S are the aforementioned canonical position, rotation and scale at-
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tributes. The weights are optimized per-gaussian during training to capture the
observed deformations in the input sequence.

2.3 Pose Informed Initialization

Initial Pose Estimation The initial tool pose is estimated using 2D images.
To obtain the 6DoF pose T} of a tool instance O;4—,, we use the state-of-the-art
dense tracker CoTracker[d] to track tool points in 2D space (query points are
initialized based on its instance mask), yielding 2D trajectories with visibility

vi € {0,1} at time t. For consecutive frames (¢,¢ + 1), given established 2D-

2D data-association of 2D points p! and pf“ from trajectory, we obatin 3D
keypoints p’f at time ¢, computed as p’t = D' - K~ ![p/;1]T given p! € P! =
{p!|v!l =1} and camera intrinsic K. The relative pose of tool object Ojq—,, is
estimated by solving:

2
n _ : t t+1
R ) RO >

using PnP algorithm. Global poses are accumulated as T} = H};;}) Tr k+1. We
employ RANSAC for improved robustness to potential tool shape changing.

Pose Informed Point Fusion (PIPF) Our Pose Informed Point Fusion con-
structs the tool O;4—, s canonical point cloud P;4—,, by aggregating depth ob-
servations across frames using estimated poses {T} }:

T
Pij—pn = U inv(T}) (D © K™ I, © M}]) (3)
=1

where inv(T}) back-projects observed tool object pointcloud into the object’s
canonical space. This pose-aware fusion enables coherent initialization despite
large tool movements.

2.4 Efficient Tool Motion Modelling

The dynamics of tools can be decomposed into global motions and local shape
changes, modeled separately by pose-guided global trajectory modeling and local
shape-change modeling, together forming our efficient tool motion modelling
module.

Pose-guided Global Trajectory Modelling (P-GTM) We model the global
trajectory of tool motion through a set of learnable object poses {T;}. The
Gaussians for the object are transformed as a whole in this modelling process.
For tool object Gaussians with mean g, and rotation R, in its local canonical
space, their world-space position p!, and orientation R!, at time ¢ are:
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Py = Ript, + i, R, =RiR, (4)

where T; = (R, t) € SE(3) is initialized from our aforementioned 6DoF pose
estimates (as also used for PIPF) and refined during training. The world covari-
ance X' derives from R% and canonical scale S,:

= =RLS,SIRS (5)

This global trajectory modelling significantly reduces learnable parameters to
6DoF per frame, enabling real-time optimization while maintaining physical
plausibility through the rigidity assumption of surgical tools. Our experiments
demonstrate the effective guidance from the known object pose for improved
reconstruction quality.

Local shape-change Modelling(LSM) In addition to the global movement,
surgical tools potentially present geometry shape changing (e.g. during its in-
teraction with tissue). We propose to model these part of geometry changing
with adapted-FDM. Specifically, we only keep the temporal parametrization of
changes in rotation p and position r among Gaussians attributes, while disabling
the modelling of scale attribute s for improved convergence and reconstruction
quality, as we demonstrate in our experimental session. This is intuitively reason-
able because surgical tools consist of particles featuring negligible non-rigidity.
Despite the constraint, our LSM still involves much higher flexibility compared
to the aforementioned P-GTM, thereafter, it potentially can help to migrate the
inaccuracy in global trajectory modelling, meanwhile being jointly optimized
with P-GTM for overall optimal reconstruction.

2.5 Joint Optimization on Tool and Tissue Reconstruction

We jointly supervise both the color and depth predictions as conducted in [21],
for which we define our color and depth losses as below:

Lo =) lIC:=L],, Lo =3 |[D:i=Dil,. (6)
icl i€l

To better distinguish foreground tool objects from background tissue, as inspired
from [I7], we additionally apply an entropy-based regularization on the rendered
alpha values of tool Gaussians, the term is formulated as below :

Ereg = - Z(Oobj 10g Oobj + (1 - Oobj) log(]- - Oobj))a (7)

where Ogp; is the accumulated opacity of the decomposed foreground. We then
optimize the total loss £ = AcLc + ApLp + Areg Lreg, jointly refining the
canonical Gaussians and the motion models for more accurate reconstruction.
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3 Experiments

3.1 Experimental Setting

Datasets and Evaluation. We evaluate our method on EndoNeRF dataset|14]
and StereoMIS dataset[d]. EndoNeRF comprises stereo endoscopic videos from
robotic prostatectomy cases, featuring surgical tool movement and dynamic tis-
sue deformations. StereoMIS includes in-vivo porcine stereo sequences with large-
scale anatomical variations. We conduct experiments on the public "pulling" and
"cutting" sequence from EndoNeRF (63/156 frames each), and select 2 clips from
StereoMIS containing " deforming bowel" and " breathing liver" (80/68 frames
each) and capturing moving surgical tools at the same time. For each scene,
we split frames into 7:1 training/testing sets following[T42TITOIT6]. We compute
PSNR and SSIM to evaluate reconstruction quality, meanwhile, report training
time and rendering speed.

Implementation Details. We train our model for 3000 iterations with loss
weights for color (A¢), depth (Ap), and regularization (Aq) set to 1.0, 1.0, and
1072, respectively. All experiments are conducted on a single NVIDIA RTX 2080
with PyTorch.

3.2 Comparison Results

Table 1: Performance comparison of our method with baselines on whole scene
reconstruction task and tool reconstruction task. We conduct experiments on
both EndoNeRF and StereoMIS datasets. We report metric computed on com-

plete frame, and the starred (x) ones computed on tool-area only.

EndoNeRF: Whole Scene Reconstruction/Moving Tool Reconstruction

Method PSNRT SSIMT PSNR*T SSIM*T min] FPST [PSNR*T SSIM*t min] FPST

ForPlane[18] 32.34 88.52| 36.97 97.57 |12:24 0.20 36.91 97.51 |12:29 041

SurgicalGS[16] 32.79 92.85| 36.13 97.85 |3.46h 27.95 34.44 97.59 |3.3h 142.8

EndoG[I10] 31.78 91.14 | 34.52 97.18 | 3:06 114.7 34.47 97.06 | 2:44 83.0

Deform3DGS|21] 32.33 91.81| 35.07 97.21 [1:10 174.0 | 35.02 97.10 |1:28 200.2

ETMM (ours) - - - - - - 36.94 97.98 |2:20 71.2
T2GS(ours) 32.95 92.12| 36.91 98.14 |3:36 50.7 - - - -

StereoMIS: Whole Scene Reconstruction|Moving Tool Reconstruction
ForPlane[18] 30.25 85.03 | 36.20  98.40 [10:08 0.34 40.83  99.09 [11:34 0.71
SurgicalGS[16] 32.48 93.37| 36.55 98.59 |4.45h 13.61 | 37.51 98.83 |1.6h 110.7
EndoG[I10] 29.94 89.56 | 34.45 98.25 |3:17 85.5 33.07  97.54 | 3:42 23.9
Deform3DGS|21] 30.48 89.88 | 34.33 98.23 [1:06 174.6 | 34.29 97.78 |1:25 213.6
ETMM (ours) - - - - - - 36.04 98.49 |1:23 714
T2GS(ours) 31.55 90.48 | 39.83 99.27 | 3:08 58.3 - - - -

We compare our proposed method with baseline methods for 1) whole scene
reconstruction task (reconstruct both tissue deformation and tool motion as a
complete scene) and 2) Moving Tool reconstruction task (tool-only). The base-
lines include Deform3DGS [21], EndoGaussian [I0] and SurgicalGS [16], being
previous state of art GS methods for surgical scene reconstruction, which at core
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translate varying representative dynamic GS modelling strategies [9[15122] in
surgery. In addition, we also compare with Forplane[18], a state of art NeRF[L1]
based method for fast surgical scene reconstruction.

For moving tool reconstruction task, as reported in the right column of
Tab. [I} our tool motion model ETMM outperforms EndoG and Deform3DGS
with significant margins in reconstruction quality across both datasets, mean-
while being competitive in training time and rendering speed. As discussed in
Sec. [1} this limitation may stem from Deform3DGS [21I] adopting FDM for 4D
modelling. While highly flexible, this modelling mechanism is prone to over-
parameterization, making it more susceptible to noise and potentially leading
to performance degradation. EndoGaussian’s limitation lies on its low rank
tensors representation [3], being incorporated as an encoder for accelerated
reconstruction[I5]. On the other hand, SurgicalGS, an MLP decoder-only 4D
GS reconstruction method, significantly outperforms EndoGaussian. Notably, it
occasionally outperforms our method but comes at the cost of extensive com-
putational overhead, requiring several hours. In general, NeRF based method
Forplane is not comparable with Gaussian based methods in terms of both re-
construction efficiency and quality.

For whole Scene Reconstruction task, our T>GS framework achieves the
best reconstruction performance, outperforming both EndoNeRF and StereoMIS
in terms of PSNR and SSIM. Additional evaluation metrics (PSNR*,SSIM*)
highlight its success stems from accurate reconstruction of the moving tools.
We also compare T2GS with Deform3DGS on the tissue reconstruction task,
namely only reconstructing tissue by masking tools. As indicated by the con-
sistent PSNR and SSIM values computed on tissue-area only in Tabf2] T>GS ’s
overall reconstruction improvement does not substantially impair tissue recon-
struction before/after the incorporation of our motion model. As also visually
justified in Figf2] — T2GS clearly showcases least artifacts in tool area, mean-
while remain intricate tissue reconstruction details. Additionally, we observe our
outperformance is more significant on StereoMIS than on EndoNeRF, where the
captured surgical tools tend to display stronger motion, justifying the effective-
ness of LSM and LSP in our proposed motion model.

3.3 Ablation Study

We conduct ablation studies on our ETMM'’s key components using the EndoN-
eRF dataset, focusing on tool motion reconstruction to validate our design. As
shown in Tab. [3] initializing tool Gaussians from the sequence’s initial frame, as
conducted in [5], without PIPF (w/o PIPF) results in degraded performance,
underscoring the importance of our pose-informed point fusion (PIPF) strategy
for holistic tool initialization. To evaluate pose-guided global trajectory mod-
eling (P-GTM), we initialize the learned transformation with an identity ma-
trix (w/o Poselnit), which eliminates pose guidance and enforces learning from
scratch, leading to performance deterioration. Removing local shape modeling
(w/o LSM) also causes a performance drop due to incomplete motion modeling
of local tool-shape changes. Additionally, we compare our adapted-FDM with
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Table 2: Additional comparison. We reported metrics on tissue-area only with
denotation(+). The left/right four columns are on EndoNeRF /StereoMIS.
Deform3DGS|21] TGS Deform3DGS|21] T2GS
PSNR ™1 SSIMT4|[PSNR ™1 SSIM™4{PSNR 1 SSIMT1{PSNR ™1 SSIM ™1
36.53 95.04 35.91 94.69 34.08 92.25 33.64 91.60

Table 3: Ablation on ETMM', Table 4: Ablation on our adapted-
Method |PSNR*t SSIM*{|minl |FPS 1 FDM used in LSM

w/o PIPF | 3443 9731 [2:45| 615 — b samrer min] FOST

W‘/:/:isgﬁlt ggzi g?g; ;gi S;i Ours(Poly) 34.32  97.29 2:48 61.6
: el e Ours(FDM) 36.86 97.92 2:56 60.1

w/o Reg 36.54  97.87 |1:48]| 57.5
Ours 36.94 97.98 220 71.2 Ours 36.94 97.98 2:20 71.2

ForPlane EndoGaussian ~ SurgicalGaussian ~ Deform3DGS TGS (ours) Reference

EndoNeRF

StereoMIS

Fig.2: Visualisation on samples from EndoNeRF and StereoMIS. We
denote PSNR/PSNR*.

alternatives including FDM (Our-FDM) and FDM with polynomial basis func-
tions (Our-Poly), as shown in Tab. [4| Their sub-optimal results highlight the
effectiveness of our design.

4 Conclusion

In conclusion, we introduce T>GS, a novel framework designed to address the
limitations of current methods by holistically modeling the dynamics of both
tissues and surgical tools in surgical scenes. As the first Gaussian Splatting-
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based framework with specialized designs for surgical tool motion reconstruc-
tion, T2GS integrates the Efficient Tool Motion Modeling (ETMM) module,
which combines Pose-guided Global Trajectory Modeling (P-GTM) and Local
Shape-change Modeling (LSM) to effectively capture the deformation field of sur-
gical tools. Our framework achieves efficient and high-quality reconstruction of
comprehensive surgical scenes, outperforming state-of-the-art methods, particu-
larly in tool reconstruction quality. By bridging the gap in surgical tool motion
modeling, T2GS sets a new benchmark for dynamic MIS scene reconstruction,
offering significant advancements in both efficiency and accuracy.
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