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Abstract. Unsupervised domain adaptive segmentation typically relies on
self-training using pseudo labels predicted by a pre-trained network on an
unlabeled target dataset. However, noisy pseudo-labels present a major bot-
tleneck in adapting a network to distribution shifts between source and target
domains, particularly when data is coming in an online manner and adaptation
is constrained to exactly one round of forward and backward passes. In this
scenario, relying solely on inaccurate pseudo-labels can degrade segmentation
quality, which is detrimental to medical image segmentation where accuracy
and precision are of utmost priority. In this paper, we propose an approach
to address this issue by incorporating expert guided active learning to enhance
online domain adaptation, even without dedicated training data. We call our
method ODES: Online Domain Adaptation with Expert Guidance for Medical
Image Segmentation that adapts to each incoming batch of data in an online
setup. However, acquiring annotations through active learning for all images
in a batch often results in redundant data annotation and increases temporal
overhead in online adaptation. We address this issue by proposing a novel
image-pruning strategy that selects the most informative subset of images
from the current batch for active learning. We also propose a novel acquisition
function that enhances diversity of the selected samples for annotating. Our
approach outperforms existing online adaptation approaches and produces com-
petitive results compared to offline domain adaptive active learning methods.
The code can be found at https://github.com/ShazidAraf/ODES

Keywords: Domain Adaptation, Active Learning, Deep Learning, Segmen-
tation, Online Adaptation

1 Introduction

In recent years, deep learning-based models have shown impressive performance in
medical image segmentation [1, 20]. However, their performance is attributed to the
availability of fully annotated training data, which is expensive to acquire [9]. Fur-
thermore, a model trained on one dataset might exhibit poor performance on another
dataset due to domain shift [5]. In recent years, Unsupervised Domain Adaptation
(UDA) [27, 30] has been proposed which leverages labeled source data and unlabeled
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Fig. 1. Illustration of different domain adaptation setups. (a) illustrates the offline
Active Domain Adaptation (ADA), where labelled source and unlabelled target domain data
are used for training and an annotation storage is required to store the annotation from the
active learner which is used later part of training. (b) shows test-time adaptation (TTA) setup.
(c) illustrates our proposed setup ODES, where we do not allow any access to source data or
any kind of data storage.

target data for self-training to reduce domain shifts. However, UDA assumes access
to labeled source data, which is often restricted due to privacy concerns. On the other
hand, the need for large unlabeled target data makes the approach tailored to offline
adaptation only. In real-world healthcare, data arrives continuously without future
patient information (online configuration), rendering offline UDA ineffective.

Offline UDA methods generally rely on self-training through pseudo-label refine-
ment [27, 30]. However, pseudo labels have been shown to be very error-prone, which
specifically hurts performance on classes that have limited samples in the training
data [25], making them unacceptable for sensitive applications like medical image
analysis. To address this issue, we incorporate Active Learning (AL) into the online
adaptation strategy instead of solely relying on pseudo labels. AL allows for budgeted
manual annotation of samples with the highest prediction uncertainty and is particularly
suited for medical image analysis since an expert is usually involved during the image cap-
turing process. While AL in offline UDA, known as Active Domain Adaptation (ADA),
improves performance [22, 26], it still requires storing training data and annotations.

Our proposed approach is named ODES: Online Domain Adaptation with Expert
Guidance for Medical Image Segmentation, an AL guided adaptation setup where we
assume medical data arrives to the expert in an online streaming fashion and the expert
has the scope of annotating an area [26]. To the best of our knowledge, this is the
first work incorporating AL in domain adaptation for medical image segmentation in
an online setup. In our setup, the model encounters a particular batch of data only
once, eliminating the necessity for any data or annotation storage. Our setting is closely
related to Test Time Adaptation methods (TTA) [12, 6, 8, 23]. Fig. 1 highlights the
distinction between offline ADA, TTA and our setup.

Overview and Contributions. Existing TTA works are primarily motivated for
real-time applications like autonomous driving, while ODES focuses on medical image
analysis where real-time output is generally not a critical requirement. ODES operates in
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Fig. 2. The pre-trained model encounters a continuous stream of batched data from target
domain. The model first predicts the pseudo-labels of the current batch. Following this, the
AL block uses Image Pruning (IP) (Sec 2) to prune the test batch and obtains a subset of
K% most informative images in the batch. Next, pseudo labels of the selected images are
passed to the Acquisition (A) block (Sec. 2) which selects the most uncertain patches with the
budgeted b% area in each of these images for annotation acquisition from an expert. Next, the
Batch Normalization (BN) layers of this model are updated.

four sequential stages for each patient: 1) data collection, 2) inference, 3) acquisition, and
4) model update. After a medical image is collected, a forward pass through a pre-trained
model provides the patient the segmentation result. Next uncertainty-guided AL is used
to acquire annotations from an expert for the uncertain regions in the inferred result.
The small wait time associated with AL is acceptable in the context of medical facilities
since there exists a time interval in between imaging sessions of consecutive patients,
known as turnover time [15]. In our setting, AL is leveraged during this turnover time,
making it feasible for any practical medical setup without any disruption in existing
workflows. Finally, the expert feedback through AL is used to update the model and
deploy it to analyze the medical data of the next patient, and the same cycle is repeated.
To further reduce the cost and time associated with annotation acquisition, we propose
an innovative image pruning strategy to remove images in a batch with least informative
value. Thus, the image pruning technique makes our approach further friendly for the
online application setup by reducing both annotation time and the burden on the expert.
We also propose a novel acquisition strategy that integrates uncertainty estimation with
a diversity-aware sampling mechanism, ensuring that the selected samples are both
informative and varied, thereby improving the efficiency of the active learning process.

Related Works. The ODES setup closely aligns with TTA due to their shared focus
on online applicability. Existing TTA methods adapt using batch normalization updates
[8, 23, 17, 3], teacher-student models [11, 24], generative models [2], and adaptive learning
rates [28, 29]. In parallel, ADA methods have emerged to address the limitations of UDA.
Approaches such as RIPU [26], LabOR [22] have utilized novel uncertainty guided acqui-
sition and inconsistency masks in their AL strategy. However, all these ADA methods
are designed for offline settings and are not directly applicable in online scenarios.

2 Methodology

In the ODES framework initially, a segmentation model fθ is trained on a set of labeled
source data S={(Xi

S,Y
i
S)}

Ms
i=1∼Ds to segment total C number of classes, where Ds is

the source domain data distribution. As shown in Fig. 2, following the setup of [23] the
inference and adaptation process is continuous in nature whereby the model encounters a
continuous stream of batches X1...→Xt. A batch can be represented by Xt={Xj

T }
Bt
j=1
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where each Xj
T ∈T with T being the target domain having a different data distribution

DT . The entire TTA process follows an infer, acquire, and update policy (Fig. 2).
First, the pre-trained model fθ is used to infer on a batch Xt and obtain pseudo

labels P̂t={P̂j}Bt
j=1. The active learner (expert) provides budgeted annotation based

on these pseudo-labels. However, all the images do not exhibit the same amount of
domain shift in a test batch. We hypothesize that annotations from the active learner
can be efficiently utilized if the annotation is spent on the images with larger domain
shifts instead of annotating all the images of the test batch.

Image Pruning. To select the images with larger domain shifts, we leverage the
batch-normalization layer (BN) statistics of incoming test batches. BN statistics has
been shown to be successful in quantifying domain shift [16]. The statistics of DS

are stored in the BN layer of the fθ in terms of running mean and running variance.
We compare the feature statistics for each Xj

T ∈Xt with the source statistics. With
a domain shift, an abrupt change in feature statistics can be visible in terms of KL
divergence [7]. Therefore, for each Xj

T in the batch we first augment (random horizontal
and vertical flips, small rotations, and brightness adjustments) it to obtain X̃j

T .
Assuming the per-channel BN layers to exhibit a Gaussian distribution the divergence

between the statistics of fθ (approximated as N (µS
lc′
,(σS

lc′
)2) and the BN statistics of

X̃j
T (approximated as N (µ

Tj

lc′
,(σ

Tj

lc′
)2) is defined as

D(S,X̃j
T )=

∑
l

∑
c′

KL
[
N
(
µS
lc′
,(σS

lc′
)2
)
,N

(
µ
Tj

lc′
,(σ

Tj

lc′
)2
)]

(1)

The higher the value of D(S,X̃j
T ) the greater the domain shift. Therefore, we select K%

images from each Xt with the highest values of D(S,X̃j
T ) and remove the remaining

resulting in a pruned batch, X̃t, with batch size B̃t<Bt.

Acquisition Function. After obtaining the pruned test batch X̃t, the active learner
annotates b% area of each image as square patches based on prediction uncertainty (en-
tropy) [18] and regional impurity [26]. However, these functions lack diversity constraints,
leading to redundant annotations of spatially close, similar patches, reducing AL efficacy.
To address this, we propose a novel weighting strategy that prioritizes diverse samples in
terms of spatial position and feature representation among the most uncertain selections.

a) Uncertainty Estimation. The uncertainty of a patch (U) is defined as the
average entropy (H) of the pixels inside it which can be expressed by

U(x,y)= 1

|A(x,y)|
∑

(u,v)∈A(x,y)

H(u,v) ; H(x,y)=−
∑
c

P(x,y,c)logP(x,y,c) (2)

where P is the softmax output of the network prediction, (x,y) is the pixel coordinate,
and c is the class. We consider a square area of A(x,y) with center at (x,y).

b) Regional Impurity. Regional impurity (P) [26] measures semantic mixing in
a region, indicating impurity if multiple instances exist. It is computed for a square
region around pixel (x,y) and expressed as:

P(x,y)=−
C∑

c=1

|Ac(x,y)|
|A(x,y)|

log
|Ac(x,y)|
|A(x,y)|

(3)



Title Suppressed Due to Excessive Length 5

Fig. 3. The figure shows our weighting strategy: the pretrained model fθ, which is composed
of an Encoder (Enc) and Decoder (Dec) processes batch X to predict P . Image Pruning
block (IP) samples images with the largest domain shift. Red boxes highlight high-uncertainty
regions of each of the sampled images. These patches are initially clustered (Ainit) closely.
FFT sampling combined with Gaussian weighting maximizes their Euclidean and feature-space
separation, resulting in a more diverse patch set in the final acquisition map (Afinal).

where |Ac(x,y)| is the area corresponding to class c in the square region around pixel
(x,y) and |A(x,y)| is total area of the square. The initial acquisition map can be defined
as Ainit(x,y)=U(x,y)⊙P(x,y)

Diversity Weightmap. Figure 3 illustrates our novel weighting strategy. First we
downsample Ainit to match the height (H′) and width (W ′) of the d dimensional
feature map. Then we obtain the high uncertainty samples by thresholding. We
apply the Farthest First Traversal (FFT) algorithm [21] (Algorithm 2) twice to
high-uncertainty samples: first using dist= Euclidean distance to select the top-N
spatially spread-out samples (N = H′ ×W ′ × b%), and then using dist = cosine
distance to select the top-N feature-wise distant samples. For each of the selected
samples, we construct a Gaussian centered at its feature location, and then aggregate
all these Gaussians to form a combined diversity weighting map. For the Euclidean
distance case, Wd =

∑N
i=1N (µdi,σ

2
di
) where µdi is a location of the sampled point

and σdi a hyperparameter which controls the spread of the Gaussian curve. Simi-
larly for the feature distance case we obtain Wf =

∑N
i=1N (µfi,σ

2
fi
). Both of the Wd

and Wf are normalized. The combined Gaussian weight map can be expressed by
W=upsample(Wd⊙Wf). W highlights the areas in Ainit where both the Euclidean
and feature distances are maximized for highly uncertain samples hence ensuring
diversity which makes the AL procedure more effective. The final acquisition function
is given as:

Afinal
j (x,y)=Uj(x,y)⊙Pj(x,y)⊙Wj(x,y) where j∈{1,2,...,B̃t} (4)

Q∗={A(x∗,y∗)j}B̃t

j=1, where (x∗,y∗)j=

{
Top

|Aimg|b%
|A(x,y)| of argmax

(x,y)∈R2

Afinal
j (x,y)

}
(5)

Here, the set Q∗ comprises the top b% most informative patches selected for annotation
from the pruned set of images. The term |A(x,y)| represents the area of a single square
patch, while |Aimg| denotes the total area of the image.
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Algorithm 1 ODES
Image Selection Rate K% per batch, AL
budget b% pixel per image
Require: Source pre-trained model fθ
1: Compute BN statistics

{
(µS

lc′
,(σS

lc′
)2)

}
for fθ.

2: for each batch t=1,2,... do
3: Initialize divergence array DIV={}
4: for each image j∈

{
Xj

T
}Bt

j=1
do

5: Xj
T ← Augmentation

6: Compute BN statistics{
(µ

Tj

lc′
,(σ

Tj

lc′
)2)

}
for augmented Xj

T

7: Compute D using Eq. 1
8: Store D in DIV
9: end for

10: X̃t← Select top-K% images from DIV
11: Perform patch sampling on X̃t

(budget b%) using Eq. 2,3, 4, 5.
12: Update model using Eq. 6.
13: end for

Algorithm 2 Farthest-First Traversal
(FFT)
Require: Set of high uncertainty
X={x1,x2,...,xn}, Number of points
to sample N

1: Initialize S←{xi}, where xi has the
highest value in Ainit

2: for t=2 to N do
3: Compute distance dist(x, S) =

min
s∈S

dist(x,s), ∀x∈X\S
4: Select x∗=arg max

x∈X\S
d(x,S)

5: Update S←S∪{x∗}
6: end for
7: return S

Adapting the Model. After selecting b% area from each X̃t, their labels are obtained
from the expert. fθ is then adapted to T by updating BN layers using a supervised
cross-entropy loss (Lsup) and unsupervised continuity loss (Lcont). In MRI, a batch
consists of 2D images forming a 3D volumetric stack with smooth transitions between
adjacent slices. Based on this, we define Lcont to minimize abrupt changes between
successive slices. If Y(x,y,c) is the label assigned by the active learner at pixel (x,y)
for class c and CE is the cross-entropy loss, the total loss can be expressed by

Lsup=−
1

|Q∗|
∑

(x,y)∈Q∗

C∑
c=1

Y(x,y,c)logP(x,y,c);

Lcont=

B−1∑
j=1

CE(P̂j,P̂j+1); Ltotal=Lsup+λLcont

(6)

The overall approach of ODES is shown in Algorithm 1.

3 Experiments and Results

Dataset and Adaptations. We use 4 datasets in our experiments, namely CHAOS
[10], DUKE [14], BMC [13], and RUNMC [13]. Using these 4 datasets, we set up 3
adaptation scenarios: (a) T1-DUAL MRI of CHAOS in-phase (IP) → out-of-phase
(OOP) CHAOS, where IP and OOP have been shown to exhibit domain shifts [8,
19]. (b) CHAOS T2-SPIR → DUKE. (c) BMC → RUNMC. The main classes for
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Table 1. Comparison among different TTA Methods reported in terms of DSC. The best
results are highlighted in red and the second best in blue. Here we consider b=1.

CHAOS T1 (IP → OOP) CHAOS
→ DUKE

BMC
→

RUNMC
Methods Liver L.Kidney R.Kidney Spleen Mean Liver Prostate

Source only 87.77 37.97 18.92 67.31 52.99 26.28 65.32
TENT [23] 86.03±0.2 58.1±0.2 54.72±0.1 70.34±0.1 67.3±0.1 46.64±1.5 71.02±0.2
CoTTA [24] 86.38±0.1 52.8±0.1 58.27±0.1 71.06±0.2 67.1±0.1 52.58±0.8 73.87±0.2
F-TTA [8] 86.91±0.17 61.99±0.11 62.11±0.2 69.51±0.2 70.13±0.2 48.29±0.7 73.18±0.2
STTA [11] 85.91±1.3 51.64±1.8 58.44±1.2 70.71±1.3 67.13±1.4 53.36±1.4 73.51±0.7

SaTTCA [12] 87.90±0.1 64.85±0.1 65.47±0.1 74.51±0.1 73.19±0.1 58.39±0.7 74.91±0.3
TTAS [3] 86.74±0.2 61.68±0.2 58.13±0.2 71.07±0.2 69.41±0.2 49.39±1.2 72.81±0.2
ODES

K = 100 88.90±0.1 72.41±0.1 74.55±0.1 78.56±0.1 78.61±0.1 71.65±0.2 79.34±0.1
K = 50 89.13±0.05 72.30±0.1 74.43±0.1 78.36±0.1 78.56±0.1 70.16±0.3 78.36±0.1
K = 10 88.41±0.1 71.45±0.1 70.22±0.1 77.12±0.1 76.80±0.1 66.11±0.2 77.47±0.1

segmentation in each experiment are (a) the liver, left kidney, right kidney and spleen,
(b) liver and (c) prostate, respectively. We use Deeplabv3 [4] for the experiment with
annotation budget 1%(b=1), and quantify performance using the Dice Score (DSC).

Table 2. Comparison with Offline ADA Method under the same annotation budget (b=1).
The offline ADA method considers multiple forward passes during offline training, whereas
ODES considers only one forward pass during adaptation.

CHAOS T1 (IP→ OOP) CHAOS
→ DUKE

BMC→
RUNMC

Methods Liver L.Kidney R.Kidney Spleen Mean Liver Prostate
RIPU [26] 93.52±0.1 87.42±0.1 86.71±0.2 86.95±0.1 88.65±0.1 80.12±0.2 89.01±0.1

RIPU-SF [26] 93.54±0.2 85.69±0.1 84.29±0.3 86.69±0.2 87.55±0.2 78.48±0.1 88.16±0.1
LabOR [22] 92.14±0.1 86.45±0.1 84.41±0.1 84.76±0.1 86.94±0.1 78.77±0.2 86.95±0.2

ODES
K = 100 91.16±0.1 81.38±0.2 83.32±0.1 80.72±0.1 84.15±0.1 77.71±0.3 84.29±0.2
K = 50 91.21±0.1 81.41±0.1 82.56±0.2 80.40±0.1 83.65±0.1 77.39±0.3 82.90±0.1
K = 10 91.15±0.2 82.05±0.1 79.12±0.1 80.51±0.1 83.2±0.1 76.01±0.2 79.62±0.2

3.1 Comparison with other methods

Comparison with online adaptation methods. As our problem setting is closely
related to TTA, our baselines are some widely used state-of-the-art TTA methods. From
Table 1 we observe that our method has outperformed all other TTA methods in all
three adaptations. Adding very minimal annotation can significantly boost performance,
specially in CHAOS → DUKE where wider range of variations (four distinct forms
of contrasts) is seen in target domain. We observe that reducing annotations by 50%
(K=100 to 50) and 90% (K=100 to 10) leads to only a 1.49% and 5.54% performance
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Fig. 4. Visual comparison with different types of adaptations

drop, respectively, in CHAOS → DUKE, demonstrating a small performance loss despite
a significant reduction in annotation cost. Same pattern is true for other adaptations too.
Comparison with offline adaptation methods. We compare ODES with ADA
methods RIPU [26] and LabOR [22], considering two RIPU variants: standard (with
source) and RIPU-SF (without source). As RIPU and LabOR are offline methods, they
require a training set. So the target domain data is split into 80% training and 20%
testing. In this experiment, ODES applies active learning only to the training split used
in RIPU, with no AL in the test split. For a fair comparison, all results are reported on
the test split in Table 2. Despite being an online method with a single pass constraint,
ODES performs close to the offline ADA methods which are allowed to do multiple
passes. For example, we observe performance gap of 2.79%,1.06%,2.66% from LabOR.
We demonstrate some visual comparisons in Fig 4.

3.2 Ablation Studies

Impact of Proposed Image Pruning and Diversity Weighting. ODES proposed a
novel image pruning strategy and diversity weighting strategy. In Table 3, we have shown
different combinations of image pruning and diversity weighting to understand their im-
pact. We observe the best performance was obtained when both strategies were involved.

Table 3. Image Pruning (I.P.) and Diversity Weighting (D.W.) with K=10. I.P. not involved
means K% were selected randomly from the batch instead of our proposed method.

I.P. D.W. IP → OOP CHAOS → DUKE
✗ ✗ 74.32 63.59
✓ ✗ 75.88 65.46
✗ ✓ 75.41 64.77
✓ ✓ 76.80 66.11

Forgetting Analysis. We employ a cyclic evaluation to analyze whether catastrophic
forgetting occurs in our approach. After one cycle of adaptation of all batches, we repeat
the process with the adapted model. In Table 4, we observe increased DSC on the
same batch of images. We observe that performance has enhanced in the second and
third cycles of evaluation. If there were catastrophic forgetting, the performance would
have degraded. The enhanced DSC indicates that catastrophic forgetting did not occur.
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Table 4. Catastrophic Forgetting analysis. Mean DSC is reported for IP→ OOP for each
batch individually for multiple cycles.

Incoming batch id→
cycle 1 2 3 ... ... 20

1 67.71 82.37 79.91 ... ... 82.11
2 77.51 87.37 87.24 ... ... 88.26
3 80.57 88.29 89.07 ... ... 89.63

4 Conclusion

We introduce ODES, a novel framework for online domain adaptation in medical image
segmentation that uses active learning on a streaming data. In order to reduce the
annotation burden of the active learner, ODES utilizes a unique image-pruning strategy
which not only mitigates the challenge of domain shift, but also makes the application
more online-friendly. Also the diversity weighting strategy boosts the performance of
AL. Through extensive experimentation, ODES has shown superior performance over
existing TTA methods and also reaches close to the performance of offline adaptation.
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