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Abstract. Aortic stenosis (AS) is a life-threatening condition caused by
a narrowing of the aortic valve, leading to impaired blood flow. Despite its
high prevalence, access to echocardiography (echo)—the gold-standard
diagnostic tool—is often limited due to resource constraints, particularly
in rural and underserved areas. Point-of-care ultrasound (POCUS) of-
fers a more accessible alternative but is restricted by operator expertise
and the challenge of selecting the most relevant imaging views. To ad-
dress this, we propose a reinforcement learning (RL)-driven active video
acquisition framework that dynamically selects each patient’s most in-
formative echo videos. Unlike traditional methods that rely on a fixed
set of videos, our approach continuously evaluates whether additional
imaging is needed, optimizing both accuracy and efficiency. Tested on
data from 2,572 patients, our method achieves 80.6% classification accu-
racy while using only 47% of the echo videos compared to a full acqui-
sition. These results demonstrate the potential of active feature acqui-
sition to enhance AS diagnosis, making echocardiographic assessments
more efficient, scalable, and personalized. Our source code is available
at: https://github.com/Armin-Saadat/PRECISE-AS.
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1 Introduction

Aortic stenosis (AS) [5] is a life-threatening heart valve disease marked by pro-
gressive leaflet thickening and calcification, restricting blood flow from the left
ventricle. If untreated, severe AS has a five-year mortality rate of 67% [19]. Early
detection is critical but remains inaccessible due to screening limitations.
⋆⋆ T. S.M. Tsang and P. Abolmaesumi are joint senior authors.
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Echocardiography (echo) is the gold-standard for AS assessment, but its use is
constrained by a shortage of trained personnel, leading to long wait times [16,18].
Point-of-care ultrasound (POCUS) offers a more accessible alternative by en-
abling non-specialists to perform focused cardiac imaging at the bedside [15].
However, POCUS exams lack comprehensive Doppler imaging and depend on
operator expertise. Machine learning (ML) can bridge this gap by automating
data acquisition and interpretation, assisting operators in capturing optimal echo
views and determining the need for additional imaging-enhancing accuracy while
reducing acquisition time.

Active feature acquisition (AFA) has been explored to optimize test-time
data collection, with methods such as L1 regularization enforcing sparsity at the
population level and patient-specific techniques utilizing decision trees, mutual
information-based selection, or Markov Decision Processes (MDP). However,
AFA has been largely limited to low-dimensional data, with high-dimensional
medical imaging applications restricted to pixel-level sampling in static im-
ages [2,3,4,7], leaving video-based dynamic acquisition unexplored.

We introduce PRECISE-AS, the first active video acquisition framework for
echocardiography, leveraging reinforcement learning (RL) to dynamically select
the most informative echo videos for each patient. Our method sequentially
acquires data until diagnostic confidence is achieved, optimizing the trade-off
between accuracy and acquisition time. Unlike static approaches that rely on
predefined echo views, PRECISE-AS constructs personalized diagnostic path-
ways, ensuring patient-specific optimization of video acquisition.

Tested on a dataset of 2,572 patients, PRECISE-AS achieves state-of-the-
art accuracy in AS detection while significantly reducing the number of required
echo videos. These results demonstrate the potential of AFA in high-dimensional
medical imaging, enabling cost-effective, scalable, and patient-tailored echocar-
diographic assessments at the point of care.

2 Background

Active Feature Acquisition. AFA frames the data acquisition problem as
a discrete-time decision-making process [24] and operates under the premise
that not all features are always available. The process begins with an empty
feature set, sequentially acquiring additional features until it reaches a target
prediction accuracy or the acquisition budget is exhausted. AFA seeks to bal-
ance prediction error against acquisition cost [12]. Approaches to AFA include
greedy algorithms, which iteratively select the feature with the highest marginal
information gain [2,8,26], and MDP-based methods that employ reinforcement
learning to optimize the entire sequence of feature acquisitions rather than just
the next immediate step [4,17,25].

Markov Decision Process. An MDP [14] is defined by (S, Send, A,R, T ),
where S is the set of states, Send ⊂ S the terminal states, and A the set of
actions. The transition function T : S × A × S → R gives the probability of
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Fig. 1. Overview of the structure. Each action ai acquires the i-th video and updates
the state. At termination (aT ), the final state sT is passed on for classification.

moving to a new state given the current state and action, while the reward
function R : S × A × S → R assigns rewards based on these transitions. An
episode is a sequence of states, actions, and rewards from an initial state to a
terminal state. A policy π : S → A maps states to actions, and the goal is to
find the optimal policy π∗ that maximizes the expected cumulative reward.

3 Method

PRECISE-AS (Fig. 1) consists of three key components. 1) A video encoder
f(.) that maps an echo video xi ∈ RH×W×3 to feature f(xi) ∈ RD, where H,
W correspond to the height and width of the frames and D is the embedding
size of the features. 2) An RL agent that iteratively selects encoded videos for
each patient until it terminates the acquisition process. 3) A classifier g(.) that
integrates the selected encoded videos and makes a diagnosis. The encoder and
classifier are trained and frozen to be used for training the RL agent. The AS
severity label is predicted as follows:

ypred = argmax
(
g(z1, z2, . . . , zN )

)
, where zi =

[
mi · f(xi)

]
. (1)

Here, N is the maximum number of videos per study, mi is a boolean scalar
indicating whether xi is selected, and · denotes a dot product. The following
sections describe each component in detail.

3.1 Feature Extraction

PRECISE-AS utilizes the open-source ProtoASNet [21] as its feature extrac-
tor model. ProtoASNet, currently the state-of-the-art for AS classification from
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B-mode echo videos, is a prototypical network that classifies AS severity while
remaining transparent in its decision-making. It learns spatio-temporal proto-
types—representative clips highlighting calcification and restricted aortic valve
leaflet motion—and compares new inputs against these reference points. By pre-
cisely locating clinically relevant features in each video frame, ProtoASNet offers
an interpretable approach in which predictions hinge on a handful of evidence-
based prototypes rather than opaque, large-scale parameters.

Class-wise similarity scores are computed by gauging how closely an input
embedding aligns with each prototype, and a fully connected layer then weights
these similarity scores to yield a probability for each AS severity category. This
design ensures that the “why” behind each classification remains grounded in clin-
ically significant patterns. ProtoASNet also incorporates aleatoric uncertainty by
introducing prototypes that capture ambiguous or poor-visibility regions, flag-
ging uncertain cases when necessary. Rather than using its final classification
output, we specifically take the vectors feeding into the final fully connected
layer as our feature representation for subsequent steps in our analysis. We train
this feature extractor independently before the rest of the framework, then freeze
its learned parameters to produce a fixed feature set for training the classifier.

3.2 Feature Selection

PRECISE-AS formulates feature selection as an MDP. Each state s ∈ RN×D

represents the current subset of selected videos. In this state space, chosen videos
retain their feature embeddings, while masked vectors replace unselected videos.
The action space consists of {aT , a1, . . . , aN}, where ai selects video xi and aT
terminates the acquisition process. The start state (s0) is zero-initialized. As
shown in Eq. (2), taking action ai updates the i-th entry of the state to f(xi):

st+1 = st.copy(), st+1[i] = f(xi). (2)

Similar to [4], a sparse reward scheme is adopted. Non-terminal states receive a
reward of 0, while terminal states receive the following reward:

R(sT ) = 1
(
ypredsT = ytrue

)
− λ

∑
i∈sT

ci, (3)

where sT denotes a terminal state, and 1(·) is the indicator function that returns
1 if ypredsT = ytrue (accuracy) or 0 otherwise. The term ci is the cost of acquiring
the i-th video in state s, and λ balances acquisition cost against classification
accuracy. To obtain ypredsT , we feed the terminal state into a frozen pre-trained
classifier. The agent can take at most N+1 actions, up to N for acquiring videos
and one final termination action aT . If the agent uses all N + 1 actions without
invoking aT , the episode automatically ends with zero reward.

PRECISE-AS uses Q-learning [23] to get the optimal policy and maximize
the expected reward. Given the continuous, high-dimensional nature of our state
space, we employ Double Deep Q-Networks (DDQN) [20], an enhancement of
standard DQN designed to mitigate overestimation bias and stabilize training.
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3.3 Feature Integration and Classification

The AS severity classifier has two objectives: (1) providing the reward signal
during RL agent training, and (2) making predictions using the subset of videos
selected by the agent at inference time. Consequently, the classifier must adapt
to varying numbers of available videos and remain robust when some views are
missing, while leveraging study-level aggregation to enhance performance beyond
individual video-level predictions.

To accomplish this, we frame the problem similarly to natural language pro-
cessing. Each echo video is treated as a “token,” and we maintain a maximum
of N tokens to match the maximum number of echo videos per study. Missing
tokens correspond to unselected videos. To ensure positional awareness, we use
a consistent ordering of echo views and apply positional encodings, so the model
understands which token corresponds to which view. This setup naturally aligns
with Transformer [22] encoders, where each sequence of tokens (videos) is passed
through the encoder along with a classification token (CLS) that aggregates in-
formation at the study level.

During training, we improve the classifier’s robustness to missing data by
randomly masking 50% of the video tokens in each epoch. For any masked token
(i.e., when mi = 0), its features f(xi) are replaced with zeros, as shown in
Eq. (1). We also apply attention masking to ensure that the CLS token ignores
these masked tokens, compelling the model to rely on the remaining unmasked
videos for classification. As a result, the classifier becomes flexible, delivering
reliable predictions even with incomplete data. After training, the classifier’s
parameters are fixed to be used in training the RL agent.

At inference time, the classifier processes a terminal state sT ∈ RN×D, inter-
preting it as a sequence of N tokens. Any videos the RL agent did not select are
masked out (i.e., zeroed), and attention masking ensures that only the acquired
videos contribute to the final classification. This design allows the system to
produce accurate and efficient AS severity assessments tailored to each patient’s
available echo data.

4 Experiments and Results

4.1 Datasets

We conducted our experiments on a private AS dataset sourced from an echo
study database at a tertiary care hospital, following institutional review board
approval. Echo videos were acquired using Philips iE33, Vivid i, and Vivid E9
systems. AS severity was classified by a Level III echocardiographer using stan-
dard Doppler guidelines [8], and only cases with consistent Doppler measure-
ments were retained. A view-detection algorithm [13] automatically identified
parasternal long-axis (PLAX) and short-axis (PSAX) cine clips, which were
then re-screened by a Level III echocardiographer to remove misclassifications.
The final dataset comprises 2,572 patient studies, including 5,055 PLAX and
4,062 PSAX cine clips. The data were split into training, validation, and test
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Table 1. Quantitative metrics include balanced accuracy (bACC), weighted F1, and
balanced mean absolute error (bMAE). bMAE is computed as the average MAE over
classes (labels 0, 1, 2 for no, early, and significant AS). Study-level results are obtained
by averaging video prediction probabilities per study, except for PRECISE-AS, which
inherently integrates study-level information. Best results are in bold.

Method Study-level (N=252) Video-based
Acquired
VideosbACC↑ F1↑ bMAE↓

ProtoPNet [6] 70.9(4.7) 0.69(.07) 0.32(.05) ✗ 100%
XProtoNet [11] 73.8(0.8) 0.74(.01) 0.29(.01) ✗ 100%

ProtoASNet (Image) [21] 73.9(3.5) 0.74(.04) 0.29(.04) ✗ 100%
Huang et al. [10] 74.7(1.6) 0.75(.02) 0.28(.02) ✗ 100%
Ahmadi et al. [1] 76.9(1.7) 0.77(.02) 0.25(.02) ✓ 100%

XProtoNet (Video) [11] 77.2(1.4) 0.77(.01) 0.25(.02) ✓ 100%
Ginsberg et al. [9] 78.3(1.6) 0.78(.01) 0.24(.02) ✓ 100%
ProtoASNet [21] 80.0(1.1) 0.80(.01) 0.22(.01) ✓ 100%

ProtoASNet+RT4U [21] 80.1(1.4) 0.80(.01) 0.22(.01) ✓ 100%
PRECISE-AS (w/o RL) 80.6(0.5) 0.83(.01) 0.20(.01) ✓ 100%
PRECISE-AS (with RL) 80.6(0.8) 0.83(.01) 0.20(.01) ✓ 47%

sets (80-10-10), ensuring patient-level exclusivity. Each study was labeled with
Doppler-derived severity levels, resulting in 1088 normal, 575 early, and 909 sig-
nificant AS cases. For consistency, we randomly selected two PLAX and two
PSAX videos per patient, resulting in four clips per study, ordered as [PLAX1,
PLAX2, PSAX1, PSAX2]. This fixed ordering gives each echo view a consis-
tent meaning. Each video is assigned a unit cost, as all clips are captured using
the same imaging modality, making the total cost directly proportional to the
number of videos acquired.

4.2 Implementation Details

For feature extraction, we train ProtoASNet according to the implementation
details outlined in the original paper. We implement DDQN using two three-
layer, fully connected networks for feature selection. The RL agent is trained
for 50 epochs using MSE loss. We apply a discount factor of 1.0 to treat im-
mediate and future rewards equally, as each additional echo video inherently
carries its own cost. The best model is selected based on its validation accuracy.
We utilize a Transformer with six encoder layers, eight attention heads, and a
256-dimensional feed-forward layer for classification. The network is trained us-
ing cross-entropy loss for 50 epochs. The framework is implemented in PyTorch,
and models are trained on a single 16 GB NVIDIA Tesla V100 GPU.

4.3 Evaluations

Quantitative Assessment. Table 1 compares the performance of PRECISE-
AS for classifying AS severity against both image-based and video-based base-
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Fig. 2. (Left) F1 score versus the average number of acquired videos per study. Each
yellow data point corresponds to a specific cost-coefficient. The solid lines represent the
mean performance, while the shaded regions indicate one standard deviation. (Right)
A sample study consisting of four echo videos. PRECISE-AS only requires the top two
videos to achieve the same patient-level accuracy as the whole study.

lines. Video-based models outperform the image-based ones because they cap-
ture the dynamic motion of the aortic valve—a key indicator of AS severity.
PRECISE-AS fully exploits this video-level information by employing the video-
based ProtoASNet as its encoder. For the baselines, study-level predictions are
obtained by averaging the class probabilities predicted at the image or video
level. In contrast, PRECISE-AS intrinsically operates at the study level by us-
ing an attention mechanism to enrich a CLS token that encapsulates study-level
information. This dual advantage explains why PRECISE-AS (without RL) out-
performs the baselines when acquiring full studies. Moreover, incorporating RL
to actively and efficiently select videos maintains performance while reducing
the average number of acquired videos per study to 47% of a full acquisition—as
indicated by PRECISE-AS (with RL). Fig. 2 provides a detailed comparison be-
tween with and without RL, showing that using RL for video selection as inputs
to the classifier, consistently has a better performance-to-number-of-videos ra-
tio, and ultimately obtains the best performance using fewer videos. This means
that to get the best performance, PRECISE-AS w/o RL must select 4 videos
per study on average, while PRECISE-AS with RL only needs around 2 videos,
as shown in a sample study in Fig. 2. Although PRECISE-AS fails to show
statistically significant improvement over ProtoASNet (p > 0.05), it matches in
evaluation metrics while using less than 50% of the echo videos.

Qualitative Assessment. Active data acquisition offers critical insights into
the decision pathways leading to a final diagnosis. These insights can inform AS
diagnostic guidelines in healthcare by emphasizing the statistical significance of
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Fig. 3. Personalized diagnostic pathways for AS classification. Each node represents a
state defined by the set of acquired videos and shows how many patients reached it.
Directed edges illustrate the sequential video acquisitions leading to a final diagnosis.

Table 2. Ablation study of the acquisition cost coefficient (λ) demonstrating the
trade-off between acquisition efficiency and classification performance.

Cost
Coefficient

Study-level (N=252) Acquired-Videos
bACC↑ F1↑ bMAE↓ Ratio↓ Count↓

w/o RL 80.6(0.5) 0.83(.01) 0.20(.01) 100% 4.00
0.001 80.6(0.8) 0.83(.01) 0.20(.01) 47% 1.88
0.01 79.9(0.8) 0.82(.01) 0.21(.01) 41% 1.64
0.1 79.0(0.6) 0.81(.01) 0.21(.01) 37% 1.50
0.2 78.5(0.7) 0.81(.01) 0.21(.01) 32% 1.30
0.25 77.1(0.6) 0.80(.01) 0.23(.02) 31% 1.26

key features and modalities. As illustrated in Fig. 3, the optimal starting point
is to acquire a PLAX view, followed by a PSAX video, thereby enabling the
classifier to examine the aortic valve from two complementary perspectives. We
hypothesize that when two videos from the same view are selected, the first is
suboptimal. Moreover, the agent adheres to implicit data acquisition rules as it
terminates the process and avoids repetitive actions within an episode.

Ablation Study. The cost coefficient (λ) in Eq. 3 plays a crucial role in training
the RL agent. Increasing λ causes the model to select fewer videos, which in turn
reduces performance (see Table 2). If λ is set excessively high, the RL agent
terminates the acquisition process immediately without selecting any videos.

5 Conclusion

PRECISE-AS represents a significant advancement in automated, patient-specific
echocardiographic assessment, addressing critical barriers to efficient and acces-
sible AS diagnosis. By leveraging reinforcement learning for active video ac-
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quisition, our approach reduces unnecessary imaging while maintaining state-
of-the-art diagnostic accuracy. This personalized, adaptive strategy streamlines
POCUS workflows, enabling faster, more targeted AS evaluations—a crucial
step toward improving early detection and timely intervention, particularly in
resource-limited settings. By demonstrating the feasibility of active feature acqui-
sition in high-dimensional medical imaging, PRECISE-AS lays the groundwork
for scalable, intelligent echocardiography, ultimately enhancing clinical decision-
making, operational efficiency, and patient outcomes.
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