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Abstract. This paper proposes a probabilistic inverse consistency image
registration network using a sparse BNN for cardiac motion estimation,
aiming to simultaneously measure aleatoric and epistemic uncertainty.
We construct a sparse BNN to predict the distribution parameters of
the inverse consistency transformations between two images. Two sym-
metric Variational Autoencoders (VAEs) are constructed to predict the
distribution parameters of latent variables in deformation space. The
posterior distribution parameters of network weights are estimated dur-
ing optimization, and only important weights are updated. Our sparse
BNNs significantly reduce the computational cost and improve the regis-
tration accuracy by Bayesian model averaging (BMA). Experiments on a
public cardiac MR dataset show that our sparse BNNs significantly im-
prove the accuracy of the bidirectional registration for small datasets. It
also provides aleatoric and epistemic uncertainty of registration results.

Keywords: Image registration · Inverse consistent · Bayesian Neural
Network · Variational Auto-Encoder.

1 Introduction

Cardiac motion is essential to evaluate cardiac function, detect dysfunction such
as cardiomyopathy, and study the heart bio-mechanic to understand cardiac
physiology [28]. Deformable image registration (DIR) is the key technique in
cardiac motion estimation. Unsupervised learning-based DIR networks have re-
cently been proposed [10,13] with great potential due to rapid inference per-
formance. There are two issues with existing deep-learning-based DIR models.
First, most existing DIR networks focus on single-directional registration. The
inverse-consistent DIR encourages bi-directional DVFs symmetrically deformed
toward each other. It has specific advantages for cyclic cardiac motion estima-
tion because it provides more accurate motion whether for end-systolic (ES)
to end-diastolic (ED) phase or ED to ES. Studies have focused on introducing
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inverse consistent constraints in image registration [7,17,18,27]. The inverse con-
sistency (IC) regularization is commonly used to make the deformations consis-
tent in both forward and backward directions. IC is performed for images [7,17]
or DVFs [24]. Moreover, inverse consistency can be used to estimate the DVF
uncertainty and, subsequently, the dose mapping uncertainty or the assessment
of the deformable image registration quality [16,25].

The other issue in DIR models is the inability to provide reliable uncertainty
estimates for the network’s decision and frequently occurring overconfident pre-
dictions [12]. Probabilistic image registration models predict the distribution of
DVFs, which is powerful enough to provide confidence in predictive results at
the pixel level [21,11]. There are two main types of uncertainty in image registra-
tion models: aleatoric and epistemic. Aleatoric uncertainty captures the inherent
noise in registration images caused by anatomical changes, image artifacts, vari-
ations across different imaging modalities, etc. Epistemic uncertainty accounts
for uncertainty in the model parameters generally due to a lack of training data.
To simultaneously deal with aleatoric and epistemic uncertainty, we propose a
probabilistic inverse consistent image registration model using variational au-
toencoders (VAEs) and sparse Bayesian Neural Networks (BNNs). VAE [19] is a
probabilistic model that encodes image pairs into latent variables in DVF space,
which can be used to measure the aleatoric uncertainty of DVFs. BNNs learn
a probability distribution over the weights of networks to mitigate overfitting,
enable learning from small datasets, and measure the uncertainty of our predic-
tions. However, most recent networks have complex architectures, resulting in
expensive computation costs for BNN training [15]. Sparse BNNs are proposed
to reduce the training and testing costs. Sparsity is induced by using a special
distribution, such as the Laplace distribution, to make a higher probability of
coefficients being close to zero [14]. Another approach is to selectively assign a
subset of network weights as Bayesian to make BNNs sparse [1,22,20].

This paper proposes an inverse consistent image registration model, denoted
as ICRnet, using symmetric VAEs and sparse BNNs. Two similar VAEs are
constructed to predict the forward and backward DVFs and generate aleatoric
uncertainty of DVFs. An inverse consistent network is trained to ensure the
forward and backward DVFs are inverse to each other. Weights of networks are
assumed following Gaussian distributions whose parameters are estimated during
the SGD iteration [23], which can reduce the learning complexity of BNNs. The
signal-to-noise ratio of network weights is used to select important weights to
be Bayesian, leading to sparse BNNs with less computation cost. To the best
of our knowledge, it is the first probabilistic model to estimate aleatoric and
epistemic uncertainty for bi-directional DVFs simultaneously. Our contributions
are detailed as follows:

– We propose a probabilistic inverse consistent image registration model using
two symmetric VAEs with the cross-attention mechanism and an inverse
consistent network. The aleatoric uncertainty is measured using the posterior
of latent variables estimated by VAEs. The forward and backward transforms
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Fig. 1. The architecture of our ICRnet. Two symmetric VAEs predict latent variable
distributions of bi-directional DVFs and the inverse consistency network regularizes
bi-directional DVFs to be inverse to each other.

are constrained to be inverse of each other, improving the prediction accuracy
of the bidirectional DVFs.

– A sparse BNN is proposed to estimate the posterior distribution of network
weights to provide epistemic uncertainty of predicted DVFs. No weight sam-
pling is performed, and only important weights are updated during optimiza-
tion. Registration accuracy can be preserved when only 5% of the Bayesian
weights are used.

– Experiments on public datasets show that our image registration model
outperforms other models in bi-directional registration, especially for small
datasets. The aleatoric and epistemic uncertainty about DVFs are also pro-
vided for downstream tasks.

2 Method

Our proposed ICRnet is illustrated in Figure 1. The architecture comprises two
symmetric VAEs for predicting latent variable distributions of bi-directional
DVFs and an inverse consistency network to regularize bi-directional DVFs to
be inverse to each other. The posterior distributions of network weights are esti-
mated by incorporating essential parameters updated during training. The final
registration results are obtained by Bayesian model averaging.

Symmetric Variational Autoencoders. In our ICRnet, the forward and
backward VAE networks are identical in architecture, we take the forward VAE
as an example. Given a source image M and a target image F , the forward VAE
aims to approximate the true posterior p(zM→F | F,M) using the variational
posterior q(zM→F | F,M) by maximizing the Evidence Lower Bound (ELBO).
The ELBO is:

ELBO = EzM→F∼q(zM→F |F,M)[log p(F |zM→F ,M)]−KL(q(zM→F |F,M)∥p(z)).
(1)
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where the generative likelihood p(F |zM→F ,M) is estimated based on the simi-
larity between the warped source image and the target image. The variational
posterior q(zM→F |F,M) ∼ (µz,Σz), µz is the mean vector and Σz is the diag-
noal covariance matrix. p(z) is the given prior of z [11].

By sampling q(zM→F |F,M) using the re-parametric trick, samples of zM→F

is obtained. We employ the compact support radial basis functions (CSRBFs)
based spatial transformation model Φ using n control points {pi}ni=1 to produce
the dense DVF ΦM→F (u) = u+

∑n
i=1 zi,M→Fψ(

∥u−pi∥2

r ), where ψ is a CSRBF
with support r, ψ(∥u−pi∥2

r ) is denoted as ψi in the following text. {zi,M→F }ni=1

are the elements of latent variables z. The decoder of VAE warps the source
image M using the forward DVF.

A diffeomorphic layer is used to fine-tune velocity field vM→F (u) = ΦM→F (u)−
u to generate invertible DVFs. The diffeomorphic transformation is defined by
the ordinary differential equation [3]: ∂Φt

M→F

∂t = vM→F (Φ
t
M→F ). Φ

0
M→F is the

identity transformation at t = 0; t ∈ [0, 1] is the time and Φ1
M→F = exp(vM→F )

is the final transformation the diffeomorphic layer estimated. The Euler method
is used to compute Φ1

M→F with successive small time-steps 1
2T

.

Φ
1/2T

M→F = u+ vM→F (u), Φ
1/2t−1

M→F = Φ
1/2t

M→F ◦ Φ1/2t

M→F . (2)

In this model, the Variational Autoencoder (VAE) encoder consists of a T2T
module and N layers of Transformer encoders. The T2T module preprocesses
the source image M and the target image F to form feature sequences, which
are input into the forward and backward VAE encoders. The Transformer uti-
lizes cross-attention mechanisms that handle the relationships between the two
images.

Inverse Consistency Network. In our ICRnet, an inverse consistency net-
work (ICN) is constructed to ensure the forward and backward DVFs in the
symmetric variational autoencoders are inverse to each other. Unlike existing
methods [24], our ICN requires that diffeomorphic intermediate transition DVFs
are mutually reversible instead of the final DVFs. The advantage is that the de-
formation of the intermediate DVF is relatively small, and it is relatively easier
to train the ICN to generate mutually reversible DVFs. The architecture of our
ICN is similar to two U-Nets with shared parameters. The forward transforma-
tion ΦM→F and backward transformation ΦF→M are input to ICN to generate
fine-tuned transformations Φ̃M→F and Φ̃F→M , which is expected to be inverses
of each other further. The diffeomorphic layer is used to recursively compute
{Φ̃1/2i

M→F }Ti=1 and {Φ̃1/2i

F→M}Ti=1. These diffeomorphic intermediate outputs com-
pute the inverse consistency loss LIC .

LIC=
1

T

T∑
i=1

[
LCC(M ◦Φ̃1/2i

M→F , F ◦Φ̃1/2T−i+1

F→M )+LCC(F ◦Φ̃1/2i

F→M ,M ◦Φ̃1/2T−i+1

M→F

]
(3)

LICE =
∥∥∥Φ̃M→F ◦ Φ̃F→M − Id

∥∥∥
1
, (4)
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where Id is identity transformation. The two terms in Equ. (3) enforce interme-
diate warped images to be the same in two directions, implying the intermediate
transformation Φ̃

1/2i

M→F is expected to be reversed to the backward intermediate
transformation Φ̃1/2T−i+1

F→M , vice versa. The LICE loss ensures the final forward and
backward transformations are reversed to each other.

Sparse Bayesian Neural Network. Maddox et al. [23] proposed SWAG that
approximated the Gaussian posterior distribution of neural network weights us-
ing the mean and low-rank covariance matrix of weights from the SGD iterates.
Nevertheless, SWAG estimated posterior distributions of all weights. It has been
observed that BNNs can be significantly condensed without greatly compromis-
ing performance [22,1,14]. Inspired by this observation, we make our ICRnet
a sparse BNN by placing posterior distributions on weights and updating only
important weights using the signal-to-noise ratio. Denote parameters of our reg-
istration model as θ, the posterior p(θ|D) ∼ N (µθ,Σθ),

µθ =
1

L

L∑
i=1

θi, Σθ = diag(θ2 − µ2
θ) +

1

K − 1
D̂D̂⊤, (5)

where θi is the snapshot of θ at the ith training iteration, θ2 = 1
L

∑L
i=1 θ

2
i , L

is the number of snapshot θi. The covariance matrix Σθ combines a diagonal
matrix whose diagonal elements are the variances of each parameter and a low-
rank approximation matrix D̂. D̂ has K columns that is much less than the
element number N of θ, where each column of D̂ is a snapshot of θ.

To make our BNNs sparse, the posterior is confined to a subspace Rs of the
original space RN , s = γN with the sparse ratio γ. Denote I = {n1, . . . , ns} as
the index of selected weights to be Bayesian, for the weight with index i ̸∈ I, its
posterior remains as before, and selected weights are updated. During the SGD
iteration of training our registration model, I is updated based on the signal-to-
noise ratio of currently estimated distribution parameters because weights with
small magnitudes tend to have little influence on the output. To simplify weights
selection, we use the kth element of θ2 − µ2

θ as the variance of the kth weight
θi,k. The signal-to-noise ratio of θi,k is defined as,

SNR=
Ep(θ|D)(|θi,k|)

VARp(θ|D)(|θi,k|)
=

µk(2Γ(
µk

σk
)−1)+ 2σk√

2π
exp(−µ2

k

2σ2
k
)√

σ2
k+µ

2
k−
[
µk(2Γ(

µk

σk
)− 1)+ 2σk√

2π
exp(−µ2

k

2σ2
k
)
]2 , (6)

where Γ is the cumulative distribution function of standard normal. SNR has the
advantage of preventing the model from instability because a high σk implies the
weight has little effect on the model. After our ICRnet is trained, the inference
is performed using the Bayesian moving average by sampling multiple {θs}Ss=1

to predict DVFs, and the average DVF is the predictive result. The training
algorithm of our sparse BNNs and Bayesian model averaging procedure is shown
in the supplement.
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Aleatoric and Epistemic Uncertainty. Registration uncertainty includes
aleatoric and epistemic uncertainty. Aleatoric uncertainty is provided by the
variance of latent variables of VAEs, corresponding to the deviation of DVFs
caused by data inherent noise. The aleatoric uncertainty V ara(u) of the DVF at
pixel u is

V ara(u) = trace
[
Σz × diag([ψ2

1 , . . . , ψ
2
n]

T )
]
. (7)

The epistemic uncertainty V are(u) of the DVF at u is found by the definition
of variance caused by the posterior of weights:

V are(u)=
1

S

S∑
s=1

(
n∑

i=1

µz,i(θ̂s)ψi

)2

−

(
1

S

S∑
s=1

n∑
i=1

µz,i(θ̂s)ψi

)2

. (8)

where S is the number of Bayesian moving averages. Significant epistemic uncer-
tainty might suggest that the registration result is made on data with which the
model has less experience. Therefore, epistemic uncertainty might correspond to
erroneous registration or outlier data.

3 Experiments

We evaluate our approach on four publicly available cardiac image datasets:
ACDC [5], York [2], MICCAI2009 [26], and M&Ms [6]. The number of image pairs
in these datasets is provided in supplements, where ACDC and M&Ms are large
datasets, while York and MICCAI2009 are small datasets. The cardiac slices at
the end of the diastolic (ED) and the end of the systolic (ES) phases are registered
to each other. For image registration evaluation, the masks provided by experts
are mapped using the estimated DVFs. The Dice score, Hausdorff distance (HD),
the bending energy (BE), and the number of non-positive Jacobian determinants
|Jϕ| ≤ 0 are used to measure the registration results. The loss LICE is used to
measure the reversibility of bidirectional DVFs.

Sparse BNNs. At first, we evaluate the performance of ICRnet without BNNs,
with BNNs, and with sparse BNNs (denoted as sBNN) using γ = 20%. As listed
in Table 1, it can be seen that whether for forward or backward registration, our
ICRnet with BNNs improved accuracy by 1% and 1.1% for two small datasets,
MICCAI2009 and York, respectively, while improved accuracy by 0.8% for two
large datasets. It validates the effectiveness of our sparse BNNs, especially for
small datasets. Note that the forward registration accuracy is better than the
backward because the forward deformation is contractive, and the target objects
are small, resulting in a large Dice value. We compare the performance of our
model with different γ. The metric |Jϕ| ≤ 0 is close whether for all cases. It is ob-
served that the performance of our model with γ = 5% is close to that of ICRnet
without BNNs, while the computation time reduces about 65%, which evaluates
the effectiveness of our sparse BNNs. Details can be seen in supplements.
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Table 1. Comparison of ICRnet without BNNs, with BNNs, and with sBNNs (γ =
20%). Data format: mean

Dataset Method Dice(%) BE HD |Jϕ| ≤ 0 ICE
fwd. bwd. fwd. bwd. fwd. bwd. fwd. bwd. fwd. bwd.

M&Ms
ICRnet 86.3 89.7 14.69 12.86 5.95 5.82 0.00 0.58 0.268 0.268

ICRnet w. BNN 87.1 90.4 10.87 9.58 4.62 4.25 0.00 0.32 0.260 0.261
ICRnet w. sBNN 86.7 90.2 11.32 10.82 4.89 4.78 0.00 0.46 0.264 0.262

ACDC
ICRnet 86.2 88.9 13.49 12.57 5.59 4.92 0.00 0.32 0.155 0.155

ICRnet w. BNN 86.9 89.7 8.51 7.55 4.87 3.81 0.00 0.18 0.149 0.147
ICRnet w. sBNN 86.5 89.3 9.72 8.72 5.11 4.36 0.00 0.26 0.152 0.151

MICCAI
ICRnet 88.2 92.3 10.79 9.26 5.20 4.47 0.00 0.22 0.185 0.185

ICRnet w. BNN 89.2 93.2 7.32 6.18 4.24 3.89 0.00 0.07 0.179 0.178
ICRnet w. sBNN 88.7 92.8 9.26 8.37 4.86 4.23 0.00 0.14 0.182 0.184

York
ICRnet 85.2 89.8 12.75 10.37 6.72 5.38 0.00 0.67 0.156 0.156

ICRnet w. BNN 86.3 90.9 9.43 8.38 5.48 4.26 0.00 0.48 0.149 0.152
ICRnet w. sBNN 85.8 90.4 10.54 9.72 6.24 4.78 0.00 0.56 0.152 0.154

fwd., bwd: abbreviations of forward and backward.

Registration results. Furthermore, we compared our network with eight other
approaches: KrebsDiff [21], DalcaDiff[9], VoxelMorph [4], NetGI[11], TransMorph[8],
ICNet[27], CycleMorph[17], and SYMNet [24], where ICNet, CycleMorph, and
SYMNet are inverse consistent registration networks. Using different models, Ta-
ble 2 lists the average registration accuracy of the forward and backward on the
M&Ms and MICCAI2009 datasets. Our network improves the Dice by 2.3% and
2.75% compared with the average Dice of other models on the two datasets, re-
spectively. Other registration results are provided in the supplement. Our model
ranks second in terms of ICE, only behind SYMnet, but achieves the Dice that
is 1.1% and 1.9% higher than SYMnet for two datasets. Demonstration of DVFs
and deformed images are visualized in the supplement.

Table 2. Comparison of forward and backward average registration results on all
datasets using different models. γ = 20% used in our model. Data format: mean

Method M&Ms MICCAI 2009
Dice(%) BE HD |Jϕ| ≤ 0 ICE Dice(%) BE HD |Jϕ| ≤ 0 ICE

KrebsDiff [21] 83.8 34.02 6.42 8.58 0.744 88.7 26.02 4.98 0.42 0.720
DalcaDiff [9] 84.9 99.83 6.78 0.12 0.739 88.2 53.97 5.92 0.00 0.449

VoxelMorph [4] 85.9 197.84 5.26 38.42 0.578 86.9 305.13 5.52 39.65 0.433
NetGI [11] 86.2 14.56 5.18 10.24 0.944 89.5 15.59 4.78 16.11 0.602

TransMorph [8] 86.8 613.19 5.31 108.81 0.573 88.6 338.48 5.28 125.53 0.485
ICnet [27] 87.5 93.06 4.97 1.45 0.312 86.9 44.56 5.45 0.41 0.141

CycleMorph [17] 86.4 223.61 5.47 24.61 0.435 86.7 89.42 5.77 13.76 0.325
SYMnet [24] 87.3 182.60 5.12 0.13 0.028 88.9 469.56 5.38 0.04 0.032

Ours 88.4 11.07 4.83 0.23 0.263 90.8 8.81 4.54 0.07 0.183

Aleatoric and epistemic uncertainty. Figure 2 visualizes the aleatoric and
epistemic uncertainty of several cases. It is observed that high aleatoric uncer-
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tainty appears in the inner smooth areas of objects due to inherent variability in
these areas. Epistemic uncertainty maps show that high epistemic uncertainty
occurs where large deformation occurs, such as the border of the right ventricle,
indicating non-confidence in these areas.

Fig. 2. Illustration of aleatoric and epistemic uncertainty. First row: aleatoric uncer-
tainty. Second row: epistemic uncertainty.

Ablation Study. We further conduct an ablation study on the ACDC dataset
to verify the contributions of different parts in our ICRnet. Here, the BNNs
are ignored to focus on the performance of two symmetric VAEs and the ICN.
The ablation experiments include the bidirectional registration (BR) and two
inverse consistent constraints LIC and LICE . Ablation results are listed in Ta-
ble 3. It shows that inverse consistent constraints improve registration accuracy.
Moreover, the smoothness and topology-preservation of DVFs have also been
improved at the same time.

Table 3. Performance comparison of different parts of ICRnet without BNNs on the
ACDC dataset. Data format: mean

Parts Dice(%) BE HD |Jϕ| ≤ 0 ICE
fwd. bwd. fwd. bwd. fwd. bwd. fwd. bwd. fwd. bwd.

BR 85.6 88.4 14.82 14.24 6.28 5.62 0.36 0.89 0.256 0.252
BR+ LIC 85.9 88.7 13.26 11.72 5.92 5.21 0.00 0.58 0.212 0.208

BR+ LIC + LICE 86.2 88.9 13.49 12.57 5.59 4.92 0.00 0.32 0.155 0.155

4 Conclusion

Our proposed inverse consistent image registration model enhances bi-directional
registration accuracy while providing aleatoric and epistemic uncertainty for
registration. Inverse consistent regularization improves bi-directional registra-
tion accuracy simultaneously. Unlike commonly used variational inference for
BNNs, no sampling of network weights is required during training, and impor-
tant weights are selected and updated for our sparse BNNs. It has the advantages
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of less computation and learning from small datasets, making our approach a
valuable advancement in learning-based image registration for clinical applica-
tions.
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