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Abstract. Monocular endoscopic depth estimation is a key to expand
the surgical field and visually navigate the endoscope, augmenting the
perception of surgeons and reducing inadvertent damages during robotic
surgery. Unfortunately, current deep learning methods still suffer from a
limited field of view, moving and limited artificial optic-fiber light sources
(illumination variations), and weak textures or structures in monocu-
lar endoscopic video images collected from complex surgical scenarios,
as well as they also get trapped in depth overestimation. This work
first explores a small deep learning model of densely convolved pyra-
mid transformer to simultaneously predict monocular depth and pose of
the endoscope without using any annotation data. Specifically, this small
model employs dense convolution and hierarchical transformer to encode
multiscale local and global features, while it uses residual attention to
effectively fuse or decode these features. Then, a photometric structure-
aware consistency mechanism is introduced to deal with the problems of
weak texture and depth overestimation, refining endoscopic depth and
pose estimation. We evaluated our methods on both synthetic and clini-
cal colonoscopic video images, with the experimental results showing that
our unsupervised learning methods can attain higher accurate depth dis-
tribution and more sufficient textures, and better qualitative and quanti-
tative results than state-of-the-art monocular depth estimation models.

Keywords: Monocular depth estimation - Unsupervised learning - Vi-
sion transformer - 3D reconstruction - Endoscopic vision.

1 Introduction

Robotic-assisted minimally invasive surgery routinely uses endoscopes to visually
diagnose and treat various diseases in the body. Augmented endoscopic vision
is essential to enhance the perception of surgeons, improve surgical outcomes
and reduce surgical risks and operating times during robotic surgery. Monocular
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endoscopic depth estimation for 3D reconstruction of surgical fields is a promising
way to augment surgical vision for precise surgical navigation.

Deep learning approaches are increasingly used for monocular depth estima-
tion. Supervised learning requires a large amount of annotated data, which is
particularly unrealistic or impractical for monocular endoscopic videos acquired
from the operating room. Many researchers work on self-supervised learning
methods [7,2] that use sparse depth supervision (e.g., structure from motion)
for depth prediction, but they depend critically on the quality of sparse recon-
struction. Recently, unsupervised learning approaches are attractively discussed
to simultaneously estimate dense depth and camera poses [8,10,4,12,6,11,5].
Unfortunately, these unsupervised methods still suffer from illumination vari-
ations (caused by moving and limited artificial optic-fiber light sources), weak
textures or structures, specific endoscope movements, artifacts (e.g., bleeding) in
endoscopic images, leading to depth estimation uncertainty and overestimation.

The motivation of this work is to explore unsupervised learning methods to
precisely predict monocular endoscopic depth and address the problem of depth
overestimation. Several technical contributions are clarified as follows. First, we
construct a simple, small deep learning model of densely convolved hierarchical
transformer. Specifically, this model combines dense convolution and hierarchical
transformer in a parallel way that can obtain more sufficient and accurate local
texture features and global depth distribution features, while it can effectively
integrate local and global features in a coarse-to-fine mode to simultaneously
estimate monocular endoscopic dense depth and pose in a feature-shared way
that can improve the relevance of depth and pose prediction. More interestingly,
we discover, demonstrate and address a problem of unsupervised monocular en-
doscopic depth overestimation. Monocular endoscopic depth prediction typically
suffers from insufficient or weak texture, illumination variations, characteristics
of tubular organs and camera movements in the body, leading to depth over-
estimation. Then, we formulate a new multiframe photometric structure-aware
consistency function to address depth overestimation in static regions caused by
camera movements, and a 3D geometric consistency function to supervise the
depth prediction in structureless or untextured regions.

2 Methods

This section details our unsupervised learning model for precise monocular en-
doscopic depth and pose estimation, while a photometric structure-geometric
consistency constraint is introduced to address the problem of overestimation.

2.1 Monocular Depth and Pose Estimation

Densely Convolved Hierarchical Transformer We explore a simple, small
deep learning architecture of densely convolved hierarchical transformer (DCHT)
for unsupervised monocular endoscopic depth and pose estimation. DCHT mainly
consists of hybrid encoders and fusion decoders for feature representation.
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The encoder combines a dense convolution block (DCB) and a hierarchical
transformer block (HTB) to extract multiscale local and global features. Dense
convolution is the capacity of excellent local feature reuse and reservation. DCB
contains 4 convolutions with skip connections and a transition-down module
(convolution and pooling) that can increase the receptive field of local features
and reduce model parameters. HTB can capture long-dependence relationships
and extract global features [1]. It mainly includes patch and position embeddings,
a transformer block, and reshaping, extracting both global spatial features and
temporal information between consecutive frames and perceiving global depth
range and illumination variations for robust training with unsupervised learning.

The decoder uses four residual attention fusion (RAF) blocks to aggregate
three local features and four global feature maps. RAF fuses local features X},
and global features H} to generate feature map F} of frame k at stage i

F} = Conv(US(RB(RB(Conv(US(H)))))), (1)
¢ = Conv(US(RB(FL @ FY)) ® X}),i = 1,2,3, (2)

where i = RB(Conv(US(H}))); US, RB, Conv, @ and ® are upsample (bilinear
interpolation), residual block, 3 x 3 convolution, addition and concatenation,
respectively. Note that US is placed before concatenation and 3 x 3 convolution
at stage ¢ (i=1,2,3) so that local texture features can compensate upsampled
global features for coarse granularity. Moreover, we directly add fused features
from the previous layer into the current layer, which enables the decoder to
estimate the depth information in a coarse-to-fine mode.

Unsupervised Training We train DCHT in an unsupervised mode. Pho-
tometric consistency constraint (PCC) loss is commonly used for unsupervised
training [8]. We introduce minimum PCC loss £p(Tx—1, 1, Ix1+1) to deal with
illumination variations between three consecutive frames Iy_1, Iy, Ixi1:

Lp=> min(|If_; — Ti|,[Tf, — L)), (3)
p

where p is a pixel in I, warped images Iﬁ_l and I’,: +1- Moreover, we introduce

geometric consistency constrain (GCC) loss LéD (Dg—1,Dg,Dg41) between three
consecutive 2D depth maps Dy_1, Dy, Dy41 to smooth the depth structure:

P =y (Dy ' = Dy)? 'y (Dj_; — D)’
¢ (DF1)2 4+ D2 | (D}_,)? + D}

p p

(4)

b

+Z (D’;2+1 - Dk)2 Z (DQH - Dk+1)2
(D)2 +DE <~ (D)2 + D7,

where D? means the warped depth map from Dy, to Dg.

2.2 Overestimation and Solution

This section proposes an overestimation problem and shows a solution to address
it. Fig. 1 illustrates our framework to solve the problem of overestimation.
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Fig. 1. Our unsupervised structure-geometric learning to address overestimation.

Overestimation Problem To calculate PCC, we warp two frames: I_; —
I and I41 — Ij). Let p = [ug, vg, 1T (T is transpose), d;, Q and [R}_, P¥ ||
be a pixel in frame Iy, its depth, camera intrinsic matrix and relative pose

(rotation matrix R}, and position P¥_,) between two consecutive frames, we
k=1 k=1 _k—1]T

compute 3D point [z}, y. 2 ]T of pixel p in the camera coordinate system:
x’lz_l U
v | = REDT(Q 7 ok | — PR (5)
Zk—l 1
k

which is reprojected on Iy_; to obtain its pixel [u],z_l, v’lj_l, 1]T and depth dl;_l

i Uy, Uk
a7t okt = (RE_)T | dy |k | +QPE_ | (6)
1 1

Egs. (5) and (6) generates warped images I; ; to compute PCC loss (Eq. (3)).

In endoscopic surgery, surgeons usually move the endoscopic camera along
the centerlines of the tubular organs in the body and barely change the direction
of the endoscope. In this way, we can observe some regions orthogonal to the di-
rection of the endoscope trajectory (white-square regions in Fig. 1) are relatively
static in consecutive endoscopic frames. These static regions will cause a problem
of overestimation in the PCC calculation, i.e., unsupervised deep models usually
estimate large depth for these regions. In warping, pixel p in these static regions
should be reprojected at the same position from one to another frame, ensuring
to accurately compute PCC, i.e., [uf ', vy~ 1] should be equal to [ug, vy, 1] in
these regions. Actually, this equahty is violated in the PCC calculation.
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Since surgeons barely change the direction of the endoscope in moving, i.e.,
Ry_1 x can be considered as the identity matrix, we rewrite Eq. (6) as

. uzfl UL
a7 (o & dy | o | + QP (7)
1 1

To let [uz_l, v,]:_l, 1] approximate [ug,vg, 1] in Eq. (7) for precise PCC calcula-
tion, either PZ_I approximates 0 or dj approximates co. Obviously, Pﬁ_l —0
is certainly violated since the endoscope is moving. So, PCC-trained models can
only estimate infinite depth (dy — o0) for these relatively static regions in con-
secutive images to satisfy Eq. (7), ensuring that PCC loss converges to zero. This
is the problem of overestimation, i.e., PCC-trained models try to estimate pixel
depth dj in these static regions to oo: dp — oo. Additionally, the deepest re-
gions can affect the other regions since unsupervised models usually integrate the
smoothness loss with PCC in training, which also leads to depth overestimation.

To address this problem, while introducing a 3D geometric consistency con-
straint to retain DCHT, we typically employ structural masks to reformulate
Eq. (3) to define a new loss of photometric structure-aware consistency (PSC).

Photometric Structure-Aware Consistency To build PSC, we first use a
convenient motion driven photo-difference method to identify these static regions
in frames Ij_; and I to generate structure mask M¥ | (p)

MZ—l(P) =

{ \kal(pi—lk(p)l L1 (p) — Lu(p)| < 7 )

1 Te-1(p) —Te(p)] > 7°

where M¥ | (p) ranges in [0, 1] and threshold 7 restricts the maximum of photo-
difference |Ix_1(p) — Ix(p)| since there are many reflective highlight points on
endoscopic images where the photo-difference is too large. M’,g_l(p) < 1 means
that the photo-difference at pixel p is small, and p is considered as static and
excluded from the PCC. Similarly, we compute M’;H (p) from frames k and k+1.

Based on structure-valid masks M}_, (p) and My (p), we reformulate Eq. (3)
and define the PSC loss Lps(Ix—1, Ik, Ix+1) to compute the photometric consis-
tency between three consecutive frames Ij,_1, I, Ix11:

Lps =Y M} (p)OP), MiT] (p) = min(M}_, (p), M (), (9)

@(p) = min(l - Q(Illz—h:[k)v 1- “Q( £+17Ik))7 (10)

where we further employ the structural similarity index measure £2(-) to com-
pute the similarity for photometric supervision. Note that structure-valid masks
M} (p) and M} (p) also exclude weak-texture or structureless regions since
these structureless regions are insensitive to camera movement, deteriorating the
PCC calculation during DCHT training.

3D Geometric Consistency While £pg can accurately supervise the depth
prediction of structure-valid regions while the depth of structureless regions is
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unsupervised. Hence, we introduce a 3D geometric consistency loss £ to pre-
dict depth more smoothly. By the camera intrinsic matrix Q, estimated depth
maps D’,z_l, Dy_1, Df_,, Dy DZ_H, Di“, Dy 1, and poses 72,’“‘1, Ti—1, T,
Te, T, TiE L, T, we generate seven 3D point sets {V," '}, {Vi_1}, {VF 1,
{Vi}, {ViE.. 3 (VEY, {Viga}. Similar to GCC, we define £3P as computing
Euclidean distance between these 3D point sets:

L= MVE = Vil + ) IV = Vall
P

P
(11)
+ 3 IVEL = VRl + D IVE = Ve

p p

Our experiments will demonstrate that £3” generates more smooth (less noises)
depth maps than L’éD . Eventually, the total loss Liytq; combines Lpg and E%D

Etotal = ,U‘CPS + (1 - M)‘CgGD7 (12)

where p is a weight to balance two training-loss functions.

3 Validation

We used a public synthetic colonoscopic database [9] and our in-house clinical
colonoscopic database to evaluate our methods. The public synthetic database
was annotated as ground truth depth for quantitative evaluation. It simulated
different lighting conditions and tissue textures of colonoscopic scenarios, and
includes 33 colonoscopic video sequences (600 frames per sequence). Our in-house
colonoscopic database was built by collecting clinical monocular colonoscopic
videos from the operating room in different medical centers. While parameters
7 =30 and X\ = 0.8, we set the learning rate from 107% to 10~° and used the
stochastic gradient descent algorithm as an optimizer with a momentum of 0.9
during training. The batch size, epoch, and iterations were set to 2, 300, and
500, respectively. We divided all data into 7:3 for training and testing.

We train our DCHT model in two ways of (1) DCHT1 using £p and £LZP and
(2) DCHT2 using Liotar (Eq. 12) to demonstrate the problem of overestimation
and the effectiveness of Lpgs (Eq. 9) to address it. Moreover, we compare our
method with the following unsupervised learning approaches: (1) Modepth2 [3],
(2) EndoSL [8], (3) M3depth [4], (4) AppeFlow [10] introduces an auxiliary mod-
ule to predict appearance flow to compensate for illumination variations, and (5)
TCL [12]. We qualitatively visualize and compare predicted depth maps for our
in-house colonoscopic data, while use five classical metrics of absolute relative
error (Abs Rel), square relative error (Sq Rel), root mean square error (RMSE),
RMSE log, and proportion of distribution consistency ¢, to quantitatively eval-
uate the estimated depth results from the synthesis database.
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Fig. 3. Visually compared depth-error maps of DCHT1 (Row 1) and DCHT2 (Row 2)
tested on the synthetic database: The numbers above the maps denote training epochs.

4 Results and Discussion

Results. Fig. 2 shows the changes of the training loss, RMSE, AbsRel, and 3
when increasing the epochs in DCHT1 and DCHT?2 training. Both DCHT1 and
DCHT?2 were trained to gradually converge by PCC or PSC. While RMSE and
Abs Rel of DCHT1 were initially descending and then ascending, the errors of
DCHT?2 were always descending. Moreover, DCHT?2 attains much higher accu-
racy 03 than DCHT1. Fig. 3 compares the estimated depth-error maps of DCHT1
and DCHT2 when increasing the training epochs. Obviously, the predicted depth
error of DCHT1 becomes larger and larger when the epochs increase. This is be-
cause DCHT1 overestimates the depth in the static regions (blue rectangle).
DCHT?2 remains almost the same depth error when increasing the epochs since
it does not overestimate the depth in the static regions. Fig. 4 further com-
pares the estimated depth maps and depth errors of using DCHT1 and DCHT?2
tested on the public database. It can be observed that the movement of the
colonoscope introduces static regions (blue rectangle). While DCHT1 overesti-
mated the depth in the blue rectangle with large depth errors, DCHT?2 precisely
estimated the depth with small depth errors.

Fig. 5 compares the predicted depth maps of using the six unsupervised
learning methods. EndoSL [8], M3depth [4] and AppeFlow [10] generate overes-
timated and incorrect depth maps in some regions in both public and in-house
colonoscopic images. Modepth2 [3] and TCL [12] work better than EndoSL [§],
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Fig.4. DCHT1 and DCHT2 predicted depth-error maps: Rows 1~4 correspond to
input synthesis or virtual images, ground truth, DCHT1’s and DCHT?2’s error maps.

Table 1. Comparison of the quantitative results tested on the public synthetic colono-
scopic database: Magenta and blue indicate the better and best results, respectively.

Methods Abs Rell | Sq Rel] | RMSE| | RMSE log| | 611 62t o3t
Modepth2 [3] 0.257 3.081 10.789 0.309 0.609 | 0.858 | 0.946
EndoSL [§] 0.331 4.302 12.973 0.493 0.432 | 0.760 | 0.875
M3depth [4] 0.323 4.197 12.620 0.484 0.453 | 0.762 | 0.887
AppeFlow [10] 0.295 3.793 11.298 0.376 0.519 | 0.784 | 0.903
TCL [12] 0.275 3.651 11.811 0.337 0.537 | 0.812 | 0.935
DCHT1 0.291 3.704 11.620 0.384 0.525 | 0.779 | 0.897
DCHT2 0.228 2.747 10.267 0.255 0.689 | 0.907 | 0.967

M3depth [4] and AppeFlow [10]. Our DCHT2 model significantly outperforms
the other methods. It introduces very few depth errors in the public synthetic
data and predicts more reasonable depth in our clinical data. Particularly, More-
over, DCHT2 can estimate more coherent depth distribution and more texture
details (e.g., intestinal folds) than other methods. Table 1 lists the quantitative
assessment results. They are generally consistent with the qualitative results.

Discussion The effectiveness of our method lies in: (1) DCHT can encode
both local textural and global spatial-temporal features and effectively fuse them
for monocular endoscopic depth and pose estimation and (2) the photometric
consistency integrates with structure-valid masks to formulate a new photometric
structure-aware consistency loss function, which can successfully deal with the
problems of depth overestimation, illumination variations and weak texture. Our
method still suffers from certain limitations. First, our method gets trapped in
incorrect monocular endoscopic pose estimation. Next, our structure-valid mask
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Fig. 5. Visual comparison of the monocular endoscopic depth maps predicted by Mod-
epth2 [3], EndoSL (8], M3depth [4], AppeFlow [10], TCL [12] and DCHT2 tested on
the public synthetic and in-house clinical colonoscopic sequences

extraction method is problematic. Moreover, the mask extraction method also
introduces non-static regions, which possibly deteriorate unsupervised training.
Conclusion This work formulates a problem of depth overestimation and
demonstrates it leads to largely incorrect and inaccurate depth prediction. We
proposed unsupervised structure-geometric learning to successfully address the
problems of depth overestimation, weak textures, and illumination variations.
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