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Abstract. Optical Coherence Tomography Angiography (OCTA) and
its derived en-face projections provide high-resolution visualization of
the retinal and choroidal vasculature, which is critical for the rapid and
accurate diagnosis of retinal diseases. However, acquiring high-quality
OCTA images is challenging due to motion sensitivity and the high costs
associated with software modifications for conventional OCT devices.
Moreover, current deep learning methods for OCT-to-OCTA translation
often overlook the vascular differences across retinal layers and strug-
gle to reconstruct the intricate, dense vascular details necessary for re-
liable diagnosis. To overcome these limitations, we propose XOCT, a
novel deep learning framework that integrates Cross-Dimensional Su-
pervision (CDS) with a Multi-Scale Feature Fusion (MSFF) network
for layer-aware vascular reconstruction. Our CDS module leverages 2D
layer-wise en-face projections, generated via segmentation-weighted z-
axis averaging, as supervisory signals to compel the network to learn
distinct representations for each retinal layer through fine-grained, tar-
geted guidance. Meanwhile, the MSFF module enhances vessel delin-
eation through multi-scale feature extraction combined with a channel
reweighting strategy, effectively capturing vascular details at multiple
spatial scales. Our experiments on the OCTA-500 dataset demonstrate
XOCT’s improvements, especially for the en-face projections which are
significant for clinical evaluation of retinal pathologies, underscoring its
potential to enhance OCTA accessibility, reliability, and diagnostic value
for ophthalmic disease detection and monitoring. The code is available
at https://github.com/uci-cbcl/XOCT.
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Dimensional Supervision · Multi-Scale Feature Fusion

1 Introduction

Optical Coherence Tomography Angiography (OCTA) has transformed reti-
nal imaging by enabling high-resolution, dye-free visualization of retinal and
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choroidal microvasculature. The en-face OCTA projections shown in Fig. 1, pro-
vide intuitive, top-down views of the vascular network, facilitating rapid assess-
ment of retinal pathologies. This non-invasive modality is crucial for early detec-
tion and monitoring of conditions such as diabetic retinopathy, age-related mac-
ular degeneration (AMD), and glaucoma [13]. However, acquiring high-quality
OCTA images remains challenging due to motion artifacts and the high costs of
software modifications required for OCTA-enabled devices [7, 4, 24, 1].

Fig. 1. OCT/OCTA volumes with retinal layer segmentation and en-face projections.
The differences between ProjILM-OPL and ProjOPL-BM highlight heterogeneous imaging
properties due to different cellular and vascular distributions across retinal layers.

Recent deep learning–based OCT-to-OCTA translation methods show promise
but face key limitations for clinical adoption. 2D B-scan-based approaches [14,
27, 17, 20, 10, 21] fail to preserve 3D vascular continuity, leading to fragmented
reconstructions that compromise network integrity. Projection-based methods
[22] reduce volumetric data to a single 2D plane (Fig. 1), obscuring fine vascu-
lar details and reducing angiogram fidelity. Meanwhile, 3D-based models [8, 18]
rely on conventional feature extraction, failing to leverage layer-specific retinal
properties needed to capture subtle microvascular structures for clinical inter-
pretation.

To address these challenges, we propose XOCT, a novel framework that
combines 2D and 3D insights to preserve fine vascular details across heteroge-
neous retinal layers. XOCT integrates two key components: Cross-Dimensional
Supervision (CDS) and a Multi-Scale Feature Fusion (MSFF) network.

The CDS module leverages the heterogeneous imaging properties of retinal
layers by integrating volumetric and layer-wise constraints. As shown in Fig.
1, variations in tissue composition and vascular distribution cause each layer
to interact differently with light, producing unique structural patterns [2]. CDS
generates 2D en-face projections via segmentation-weighted z-axis averaging,
aligning them with ground-truth maps using a composite loss: L1 loss for pixel-
wise accuracy, adversarial loss for anatomical realism, and perceptual loss [11] for
high-level structural fidelity. By providing fine-grained, layer-specific supervision,
CDS encourages the network to learn distinct feature representations for each
retinal layer, enforcing intra-layer consistency, preserving vessel coherence, and
capturing subtle microvascular details that conventional methods often miss.
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The MSFF module is designed to refine vessel delineation by capturing
vascular details across multiple spatial scales. Recognizing that OCTA images
feature extremely thin and intricate vascular structures, MSFF employs a com-
bination of isotropic kernels for balanced local feature extraction and anisotropic
kernels tailored to detect the elongated patterns of retinal vessels. Additionally,
depth-wise large-kernel convolutions are incorporated to broaden the receptive
field, ensuring that global vessel connectivity is effectively captured. To optimize
computational efficiency, the output channels of each convolutional block are
halved, and the resulting multi-scale features are subsequently fused via point-
wise convolution coupled with a channel reweighting mechanism. This adaptive
fusion process emphasizes critical vascular details, thereby enhancing the overall
fidelity of OCT-to-OCTA translation by preserving both fine local structures
and the broader vascular network.

The main contributions of our work are: (1) XOCT, a deep learning frame-
work that integrates CDS and MSFF for OCT-to-OCTA translation. (2) CDS,
the first method to incorporate retinal layer characteristics during training, pre-
serving vessel coherence and structural integrity. (3) MSFF, an efficient module
that enhances fine vascular detail capture via multi-scale feature fusion. (4) Ex-
tensive evaluation on the OCTA-500 dataset [16], demonstrating superior vascu-
lar clarity, continuity, and translation performance in both 3D OCTA volumes
and layer-wise en-face projections with direct clinical relevance.

2 Related Works

2D B-scan-Based Approaches: Early OCT-to-OCTA translation methods
focused on individual 2D B-scans. Lee et al. [14] proposed an encoder-decoder-
based framework for mapping paired OCT B-scans to OCTA images. Zhang et al.
[27] improved vascular detail preservation with texture-guided down-sampling,
while Li et al. [17] incorporated adversarial loss to enhance image fidelity. Despite
these advancements, the lack of volumetric modeling limited their ability to
accurately reconstruct retinal vasculature.

Projection-Based Approaches: These methods convert OCT and OCTA
volumes into 2D en face representations before translation. Pan et al. [22] pro-
posed MultiGAN, an unsupervised multi-domain framework that generated OCTA
projection maps from OCT projections, enforcing anatomical consistency through
domain-specific loss functions. However, the projection process inherently dis-
cards depth information, leading to the loss of fine vascular structures.

3D-Based Approaches: Recent studies have adopted volumetric OCT-to-
OCTA translation to address 2D-based limitations. Huang et al. [8] introduced a
patch-based 3D model with a context-enhanced encoder, while Li et al. [18] devel-
oped TransPro, a 3D Pix2Pix framework refined via supervision from pretrained
2D models. However, these methods overlook retinal layer-specific imaging char-
acteristics and depend on standard convolutional operations, which struggle to
capture intricate vessel structures present in OCTA images.
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Fig. 2. Overview of XOCT.

3 Methods

We propose XOCT (Fig. 2), a novel deep learning framework for OCT-to-
OCTA translation that builds on a 3D encoder-decoder architecture enhanced by
two key components: Cross-Dimensional Supervision (CDS) and a Multi-Scale
Feature Fusion (MSFF) module. XOCT accepts a volumetric OCT scan X ∈
RD×H×W as input and outputs a reconstructed OCTA volume Ŷ ∈ RD×H×W .
We then implement an end-to-end training with a composite loss function com-
bining volumetric and projection-based objectives to ensure both global struc-
tural consistency and precise vessel delineation.

3.1 Cross-Dimensional Supervision

Conventional volumetric supervision treats the OCTA volume as homogeneous,
overlooking the retina’s intrinsic heterogeneity. In reality, the retina consists of
multiple layers, each with distinct tissue compositions, cellular structures, and
vascular distributions [2]. To capture these nuances and preserve fine vascular
details, we propose a Cross-Dimensional Supervision (CDS), which augments
standard 3D supervision with targeted layer-wise guidance.

Given a retinal layer segmentation map S ∈ RD×H×W , we generate 2D
layer-specific projection maps Pl ∈ RH×W for each layer l. For a predicted
OCTA volume Ŷ, the corresponding layer-specific projection is computed as the
segmentation-weighted average of voxel intensities along the z-axis:

P̂l =

∑
z Ŷ ⊙ Sl∑

z Sl
, (1)

where ⊙ denotes element-wise multiplication.
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The predicted projections, P̂l, are compared to their ground truth counter-
parts, Pl, using a composite loss function:

L2D =
∑
l

(
α2DL1(P̂l,Pl) + β2DLadv(P̂l,Pl) + γ2DLperp(P̂l,Pl)

)
, (2)

where L1 minimizes pixel-wise differences, Ladv promotes realism through ad-
versarial training, and Lperp—based on a pretrained VGG19 network—ensures
high-level perceptual fidelity. Supervising each layer individually encourages the
network to learn distinct representations for different layers, preserve intra-layer
consistency, and accurately reconstruct vascular details specific to each layer.

Integrating this layer-aware supervision with volumetric loss: L = L3D+L2D,
enables the network to preserve vessel continuity and structural integrity across
retinal layers, enhancing the overall fidelity of OCT-to-OCTA translation.

3.2 Multi-Scale Feature Fusion

We introduce the Multi-Scale Feature Fusion (MSFF) module, which integrates
local and broader context across spatial scales for enhanced fine vasculature re-
construction. MSFF employs both isotropic and anisotropic convolution ker-
nels. Isotropic 3×3×3 convolutions capture balanced spatial information, while
anisotropic kernels (3×1×1, 1×3×1, and 1×1×3) extract elongated vessel fea-
tures. Additionally, depth-wise large-kernel (5x5x5) convolutions are used to
expand the receptive field and capture broader vessel connectivity. Although
larger kernels (e.g., 7×7×7) offered only marginal performance gains, the 5×5×5
configuration was selected as a trade-off between accuracy and computational
efficiency, avoiding the cubic scaling cost of larger kernels. This architecture is
specifically optimized for 3D vascular reconstruction and contrasts with prior
multi-scale segmentation methods that employ varying kernel shapes and con-
figurations [25].

To enhance efficiency while maintaining performance, we halved the output
channels of each convolutional block, reducing parameter count. Multi-scale fea-
tures are fused via point-wise convolution and channel re-weighting, adaptively
emphasizing critical vascular details across different spatial scales. A residual
connection from the module’s input further preserves low-level details and fa-
cilitates gradient flow. This multi-scale strategy effectively delineates delicate
vasculature in OCT and OCTA, improving vascular reconstruction fidelity.

3.3 Overall Framework

During training, we jointly optimize the 3D volumetric generator G3D, the vol-
umetric discriminator D3D and the 2D projection discriminators Dl

2D from dif-
ferent retinal layers l under a generative adversarial learning paradigm [9].

The overall volumetric loss is defined as:

L3D = α3DL1(Ŷ,Y) + β3DLadv(Ŷ,Y), (3)
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where L1 minimizes the pixel-wise differences between the predicted OCTA vol-
ume Ŷ and the ground truth Y, and Ladv is the adversarial loss given by:

Ladv = EY∼p

[
log

(
D(Y)

)]
+ EX∼p

[
log

(
1−D

(
G(X)

))]
. (4)

Note that for 2D supervision, en-faceprojections are directly generated from
the predicted OCTA volume using retinal layer segmentation maps, eliminating
the need for a separate 2D generator (Eq. 1). These projections are evaluated
using an adversarial framework with additional L1 loss and perceptual loss [12].
The segmentation maps are used exclusively during training for 2D projection
supervision and are not required for OCT-to-OCTA translation during inference.

4 Experiments

4.1 Datasets and Experimental Setup

Dataset: The publicly available OCTA-500 [16] comprises of 500 3D OCT-
OCTA volume pairs and supplementary annotations, including retinal layer seg-
mentation. OCTA-500 is divided into two subsets: OCTA-3M and OCTA-6M.
The OCTA-3M contains 200 scans with a field-of-view of 3mm× 3mm× 2mm
and a volume size of 304 × 304 × 640 pixels, partitioned into 140 training, 20
validation, and 40 test scans. The OCTA-6M consists of 300 scans with a field-
of-view of 6mm × 6mm × 2mm and a volume size of 400 × 400 × 640 pixels,
divided into 200 training, 30 validation, and 70 test scans.
Implementation Details: XOCT utilizes a modified 3D Pix2Pix architecture
trained for 300 epochs with Adam optimizer, a learning rate of 1× 10−4, and a
batch size of 1. The adversarial loss weights were fixed at 1, while a grid search
determined the optimal L1 and perceptual loss weights to be λL1

= 10 and
λperp = 1, respectively.
Experimental Setup: We evaluate the performance of XOCT by assessing both
the en-face projections and reconstructed 3D volumes. For the en-face evaluation,
we use projections that differ from those employed during training to validate our
contributions. Specifically, Projfull spans from the internal limiting membrane
(ILM) to Bruch’s membrane (BM), capturing the complete vascular structure,
while Projmean is computed as the mean projection across the entire z-axis, of-
fering a representative view of the overall vasculature. Evaluation metrics include
Mean Absolute Error (MAE), Peak Signal-to-Noise Ratio (PSNR)[6], Structural
Similarity (SSIM)[26], and Perceptual Discrepancy (Perp.)[11].

We compare XOCT with leading 2D-based methods (BBDM [15], Pix2Pix [9],
MultiGAN [22]) and 3D-based methods (BBDM3D* [3], Pix2Pix3D [5], TransPro
[18]), demonstrating the improvements achieved by our model. Recent studies,
such as [3, 19], address the high GPU memory consumption of 3D diffusion by
adopting a 2.5D strategy that stacks multiple neighboring slices as a single input.
In our experiments, we use BBDM3D* [3] as a representative diffusion method
for comparison.
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4.2 Experiment Results

Table 1. OCT to OCTA translation results on the OCTA-3M and OCTA-6M
datasets. ↓ indicates lower is better, ↑ indicates higher is better.

OCTA-3M Projfull Projmean 3D
Method MAE ↓ PSNR ↑ SSIM ↑ Perp. ↓ MAE ↓ PSNR ↑ SSIM ↑ Perp. ↓ MAE ↓ PSNR ↑ SSIM ↑ Perp. ↓
BBDM [15] 22.86 18.84 0.420 0.741 25.33 18.14 0.384 0.727 - - - -
Pix2Pix [9] 24.25 18.16 0.380 0.726 27.18 17.47 0.340 0.708 - - - -
MultiGAN [22] 22.54 18.87 0.417 0.722 24.73 18.32 0.382 0.708 - - - -
BBDM3D* [3] 21.04 19.54 0.460 0.703 22.51 19.27 0.457 0.675 2.69 30.71 0.883 0.202
Pix2Pix3D [5] 19.87 19.91 0.556 0.656 21.61 19.47 0.541 0.620 2.88 29.45 0.885 0.198
TransPro [18] 19.54 20.14 0.580 0.608 20.93 19.83 0.573 0.582 3.30† 28.46 0.866 0.203
XOCT 19.22 20.21 0.608 0.573 20.54 19.90 0.596 0.558 2.78 30.08 0.893 0.184

OCTA-6M Projfull Projmean 3D
Method MAE ↓ PSNR ↑ SSIM ↑ Perp. ↓ MAE ↓ PSNR ↑ SSIM ↑ Perp. ↓ MAE ↓ PSNR ↑ SSIM ↑ Perp. ↓
BBDM [15] 22.94 18.68 0.367 0.729 25.73 17.92 0.346 0.714 - - - -
Pix2Pix [9] 22.87 18.67 0.347 0.703 26.43 17.76 0.303 0.695 - - - -
MultiGAN [22] 21.22 19.32 0.374 0.713 24.69 18.43 0.332 0.714 - - - -
BBDM3D* [3] 17.90 20.81 0.433 0.702 18.29 20.81 0.436 0.686 2.48 31.44 0.889 0.146
Pix2Pix3D [5] 17.39 21.06 0.494 0.641 17.21 21.33 0.510 0.609 2.34 31.23 0.903 0.136
TransPro [18] 17.40 21.07 0.524 0.591 17.42 21.24 0.539 0.570 2.72† 29.92 0.887 0.155
XOCT 16.65 21.46 0.568 0.541 16.21 21.85 0.574 0.537 2.34 31.26 0.905 0.131

†The reported MAE in TransPro[18] appears higher (e.g., 0.078 vs 3.30/255=0.013) due to a uint8
overflow error (e.g., abs(1-2) = 255). All reported MAE values use float32 for a fair comparison.

Table 1 presents the quantitative results for the OCTA-3M and OCTA-6M
datasets across 2D en-face projections (Projfull, Projmean) and 3D OCTA vol-
umes. 2D projection-based methods (BBDM, Pix2Pix, MultiGAN) exhibit poor
reconstruction of fine vascular details due to volumetric collapse, leading to lower
PSNR/SSIM and higher MAE/Perp. Although BBDM3D* improves vessel re-
construction by stacking B-scans as channels, it remains suboptimal usingvolu-
metric structure. Similarly, TransPro, which employs a 3D Pix2Pix framework
with pretrained 2D supervision, inherits the constraints of its 2D components,
resulting in compromised 3D reconstructions.

Although BBDM3D* achieved lower MAE and higher PSNR in 3D evalua-
tion, qualitative analysis (Fig. 3) revealed blurring, particularly in small vessels.
This suggests that while BBDM3D* captures overall intensity well, reducing
pixel-wise error, it fails to preserve high-frequency microvascular details, instead
prioritizing coarse structural consistency. In contrast, XOCT produces sharper
and more anatomically faithful vessels, and while this leads to superior qualita-
tive results, metrics like 3D MAE, which are sensitive to overall intensity, may
not fully capture these critical structural improvements.

Beyond quantitative metrics, XOCT excels in preserving vessel continuity
and fine vascular structures, as demonstrated in Fig. 3. It more accurately cap-
tures subtle dropouts in vessel density, which are critical in detecting microvas-
cular abnormalities associated with diseases such as diabetic retinopathy [23].
In contrast, Pix2Pix3D and TransPro tend to overcompensate by filling in miss-
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Fig. 3. Comparison of OCT-to-OCTA translation methods across 2D en-face projec-
tions (Projfull, Projmean) and a 3D z-slice cross-section. Red arrows highlight where
XOCT achieves enhanced vascular connectivity, accurately generates vessels in regions
where other models fail, and better preserves subtle vessel dropouts. XOCT recon-
structs fine vascular structures with greater clarity and continuity, reducing artifacts
and improving the delineation of small vessels that other methods struggle to resolve.

ing vessel regions, potentially obscuring clinically significant perfusion deficits.
XOCT’s ability to maintain vessel continuity across varying scales underscores
its robustness in generating clinically meaningful OCTA reconstructions.

4.3 Ablation Study

Table 2 presents an ablation study that evaluates the proposed CDS and MSFF
modules, highlighting significant improvements in both components. Specifically,
CDS enhances en-face projection metrics by incorporating layer-aware 2D super-
vision, reinforcing vascular integrity retinal layer-specific constraints. Meanwhile,
MSFF improves 3D reconstruction by capturing fine volumetric details via multi-
scale feature extraction with less parameters. When integrated, CDS and MSFF
enable XOCT to preserve vascular coherence and maintain detailed volumetric
information, outperforming the baseline across all metrics.

5 Conclusion

We introduced XOCT for OCT-to-OCTA translation, integrating CDS for layer-
specific feature extraction and MSFF for vascular reconstruction. Experiments
on OCTA-500 highlight XOCT’s improvements, particularly in 2D en-face pro-
jections, enhancing vascular continuity and microvascular detail preservation,
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Table 2. Ablation Study on Proposed Modules. ↓: lower is better, ↑: higher is better.

OCTA-3M # Param. Projfull ProjILM-OPL ProjOPL-BM Projmean 3D
Method SSIM ↑ Perp. ↓ SSIM ↑ Perp. ↓ SSIM ↑ Perp. ↓ SSIM ↑ Perp. ↓ SSIM ↑ Perp. ↓
Pix2Pix3D 64.6M 0.556 0.656 0.509 0.720 0.479 0.668 0.541 0.620 0.885 0.198
+CDS 64.6M 0.600 0.581 0.563 0.606 0.522 0.616 0.590 0.563 0.889 0.195
+MSFF 52.7M 0.589 0.651 0.552 0.707 0.523 0.677 0.577 0.614 0.893 0.184
XOCT 52.7M 0.608 0.573 0.577 0.592 0.533 0.609 0.596 0.558 0.893 0.184

OCTA-6M # Param. Projfull ProjILM-OPL ProjOPL-BM Projmean 3D
Method SSIM ↑ Perp. ↓ SSIM ↑ Perp. ↓ SSIM ↑ Perp. ↓ SSIM ↑ Perp. ↓ SSIM ↑ Perp. ↓
Pix2Pix3D 64.6M 0.494 0.641 0.485 0.655 0.419 0.632 0.510 0.609 0.903 0.136
+CDS 64.6M 0.560 0.552 0.532 0.556 0.494 0.562 0.567 0.542 0.902 0.135
+MSFF 52.7M 0.550 0.636 0.535 0.643 0.467 0.641 0.554 0.607 0.909 0.132
XOCT 52.7M 0.568 0.541 0.544 0.540 0.501 0.545 0.574 0.537 0.905 0.131

essential for retinal pathology assessment. Despite these advancements, XOCT
requires validation on clinical datasets and diverse imaging devices for robust-
ness. Future work will enhance domain generalization, small vessel reconstruc-
tion, and computational efficiency for real-time use. Expanding XOCT to multi-
modal retinal imaging could further improve its clinical applicability.
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