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Abstract. Congenital Heart Disease (CHD) is one of the leading causes
of fetal mortality, yet the scarcity of labeled CHD data and strict pri-
vacy regulations surrounding fetal ultrasound (US) imaging present sig-
nificant challenges for the development of deep learning-based models
for CHD detection. Centralised collection of large real-world datasets for
rare conditions, such as CHD, from large populations requires significant
co-ordination and resource. In addition, data governance rules increas-
ingly prevent data sharing between sites. To address these challenges,
we introduce, for the first time, a novel privacy-preserving, zero-shot
CHD detection framework that formulates CHD detection as a normal-
ity modeling problem integrated with model merging. In our framework
dubbed Sparse Tube Ultrasound Distillation (STUD), each hospital site
first trains a sparse video tube-based self-supervised video anomaly de-
tection (VAD) model on normal fetal heart US clips with self-distillation
loss. This enables site-specific models to independently learn the distri-
bution of healthy cases. To aggregate knowledge across the decentral-
ized models while maintaining privacy, we propose a Divergence Vector-
Guided Model Merging approach, DivMerge, that combines site-specific
models into a single VAD model without data exchange. Our approach
preserves domain-agnostic rich spatio-temporal representations, ensuring
generalization to unseen CHD cases. We evaluated our approach on real-
world fetal US data collected from 5 hospital sites. Our merged model
outperformed site-specific models by 23.77% and 30.13% in accuracy and
F1-score respectively on external test sets.

Keywords: Normality Modeling · Fetal Ultrasound · Model Merging.

1 Introduction and Background

Congenital heart disease (CHD) accounts for approximately 28% of all congenital
anomalies worldwide [26]. CHD encompasses a diverse range of heart conditions,
varying in frequency and severity, and can be diagnosed early by fetal ultrasound
(US) scanning. As a widely used non-invasive screening tool, fetal US is favored
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Fig. 1. (a) t-SNE visualization (left) shows that our proposed method (after merging
models trained on 3 sites) achieves nearly distinct clustering, suggesting well-separated
feature representations. On the other hand, Model 3 (trained on Site 3) is observed to
achieve low separability (right). (b) The quantitative comparison of both models evalu-
ated on Site 2 further illustrates the benefit of our proposed model merging technique.

for its rapid data acquisition, affordability, portability, and ability to perform
assessments without ionizing radiation. Early detection of CHD from fetal US is
crucial to ensure long-term health outcomes [10, 5, 2]. However, diagnosing CHD
remains challenging and time-intensive due to the subtle nature of certain heart
defects and variable fetal US video quality. Further, fetal heart assessment [27]
presents significant challenges due to several factors, including fetal movement,
rapid heart rate, small size, and limited accessibility. This suggests a clinical
need for approaches to automated CHD detection, and an opportunity for deep
learning-based analysis [13, 11, 15, 14, 12]. However, applying supervised learning
methods is often impractical, as they are not designed for highly imbalanced
data scenarios such as our clinical setting. Many forms of CHD are extremely
rare, resulting in highly imbalanced datasets. Conversely, a large volume of fetal
US videos from healthy fetuses is routinely collected during standard screening
procedures. Here, we exploit the availability of healthy population video to train
a novel anomaly detection framework to identify CHD cases during inference.

Anomaly detection models in the literature, such as [32, 16, 34, 1, 15], offer
promising solutions for normality modeling. For effective performance, such mod-
els need to be trained on diverse, centralized data sourced from multiple hospital
sites, thereby capturing a broad spectrum of fetal cardiac variations in appear-
ance, geometry and disease. However, privacy regulations prohibit cross-hospital
data sharing [24, 19, 20, 23, 21, 22, 28, 29, 17, 6], creating a significant bottleneck
in development of centralized models. To this end, instead of combining data
from different sites, we propose to effectively merge models trained at individual
sites. Our approach allows the aggregation of knowledge learned from individual
hospital datasets without the need for data sharing and while avoiding interfer-
ence and conflicts due to domain shifts. This ensures that essential task informa-
tion is preserved, leading to a merged model that leverages the strengths of each
local model while maintaining privacy compliance. The primary contributions of
this work are as follows:
1. To the best of our knowledge, this is the first work to introduce video nor-
mality learning for CHD detection in fetal US videos. We train a self-
supervised video anatomy detection network on healthy fetal US clips using
self-distillation loss that incorporates a student-teacher model (§2.1). Our novel
Sparse Tube Ultrasound Distillation (STUD) model learns the spatio-
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temporal representation related to healthy fetal hearts and is leveraged to detect
previously unseen CHD anomalies during test time. Our model is light-weight
as we sparsely sample 3D space-time tubes of varying sizes from the US video to
create learnable tokens, which are then processed by a vision transformer. This
enables us to develop strong and computationally efficient video models.
2. This is also the first work to investigate model merging for multi-site
US analysis as well as for normality modeling. We propose a two-step
model merging procedure dubbed DiVMerge to enhance robustness with respect
to model noise and model drifts while preserving normality information (§2.2).
We first compute the geometric median of local models, acting as a denoising
mechanism and then compute the divergence vectors as the difference between
individual models and the geometric median. The parameters with small diver-
gence vector component are retained, while others are replaced by the geometric
median. In addition, the overall magnitude of the divergence vector for each site
model is used to dynamically weight the updated local models before merging.
3. Our method enables zero-shot CHD detection coupling of the normal-
ity model and k-Nearest Neighbours (KNN) algorithm, thereby eliminating the
need for additional fine-tuning. Trained on healthy data from 3 hospitals in
a privacy-preserving manner, our normality model demonstrates the ability to
detect anomalies [4] (such as Hypoplastic Left Heart Syndrome (HLHS), Coarc-
tation of the Aorta (COA), Right Aortic Arch (RAA), Left Superior Vena Cava
(LSVC), Ventricular Septal Defects (VSD), and Cardiomegaly (CM)). In partic-
ular, DiVMerge outperforms the centralized model and all individual site-specific
models on 2 external hospital datasets with distinct domain shifts.

2 Methodology
2.1 Site-specific Self-supervised Video Anomaly Detection

Ultrasound videos are inherently fine-grained and require dense temporal sam-
pling to capture subtle changes essential for accurate understanding and de-
tection. However, conventional tokenization methods using 2D patching [9] or
fixed 3D kernels [25] generate an excessive number of tokens, making dense sam-
pling computationally expensive and reducing the number of frames that can
be processed on limited computing. To address this, our Sparse Tube Ultra-
sound Distillation (STUD) network employs a sparse tube sampling [18] that
drastically reduces token redundancy while preserving spatio-temporal detail.
For self-supervised video normality modeling, we integrate a video-focused self-
distillation loss inspired by DINO [3], which trains a teacher-student network to
learn consistent feature representations across diverse augmented views.
Sparse Tube Construction and Feature Extraction We adopt a sparse
sampling strategy to address the limitations of dense tokenization. A standard
2D convolution with a 16× 16 kernel is applied on frames sampled with a large
temporal stride (e.g., every 16th frame). The total number of tokens generated
from a video clip of dimensions T ×H×W is defined by: Ntokens =

T
sT

× H
sH

× W
sW

where sT , sH , and sW denote the temporal and spatial strides, respectively. We
adapt two primary types of tubes: (a) Image Tubes of shape 1× 16× 16× d
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Fig. 2. Overview of the proposed technique. Left figure shows self-supervised video
anomaly network training at each site leveraging sparse-tube tokenizer and teacher-
student model via self-distillation loss. This leads to the development of models M1,
M2, and M3 at three sites. The right figure shows the geometric median computation
followed by estimation of divergence vectors for each site. The divergence vectors are
then employed for selective parameter retention to reduce model drift and for adaptively
weighting different models for final model merging.

(where d is hidden dimension), which tokenize individual frames and (b) Video
Tubes of shape 8×8×8×d, which capture the spatio-temporal context over mul-
tiple frames. Both types of tubes use a stride of 16× 16× 16. To further capture
diverse motion patterns in ultrasound videos, we incorporate variations such as
temporally elongated tubes (16× 4× 4) for long-duration actions and spatially
focused tubes (2× 16× 16) for fine spatial detail (see Fig. 2). A space-to-depth
transformation is applied reduce the channel dimension of the feature map (by a
factor of 2), effectively enlarging the receptive field without increasing the num-
ber of parameters. Additionally, we learn a single 3D kernel (8× 8× 8) reshaped
by trilinear interpolation to adapt to various tube configurations (4 × 16 × 16
or 32 × 4 × 4). These enhancements ensure that our sparse sampling method
captures all the necessary details while reducing computational demands.
Self-Supervised Learning via Self-Distillation in the Video Domain
We generate multiple spatio-temporal augmentations (each called a ’view’) to
capture global context and fine-grained local details. Specifically, we create two
global views encompassing a large portion of the video’s temporal and spatial
dimensions and eight local views focusing on smaller, more detailed regions (see
Fig. 2). In our self-distillation framework, the teacher network processes only the
global views to produce target feature representations, while the student network
processes both global and local views. The self-distillation loss encourages the
student representations to align with the teacher by minimizing the discrepancy
between their outputs. To ensure stable learning, the teacher model parameters
are updated by an exponential moving average (EMA) of the student model.

2.2 Divergence Vector-guided Model Merging (DiVMerge)

We propose a two-step model merging procedure designed to improve robustness
to model drifts and interference while preserving essential normality information.
Step 1: Geometric Median Computation: The first step involves comput-
ing the geometric median of the locally trained models from individual sites
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Fig. 3. Feature map visualization overlaid on sequential US frames, highlighting the
model’s capability to focus on key anatomical fetal heart structures for CHD

(see Fig. 2). Given a set of N locally trained models M = {M1,M2, . . . ,MN},
each represented by its parameter set θi ∈ Rd, the geometric median is the
point θ∗ that minimizes the sum of Euclidean distances to all individual models:
θ∗ = argminθ

∑N
i=1 wi∥θi − θ∥2 where θi represents the parameter vector of the

i-th local model, wi is the weighting factor for each model (uniform in our case).
This method is particularly beneficial in our distributed settings, where model
updates may vary significantly across clients due to the natural heterogeneity
in data distributions. The geometric median filters out inconsistencies, outliers,
and extreme deviations in model updates that may arise due to small or biased
datasets, noisy labels, or domain shifts in individual hospitals.
Step 2: Divergence Vector-Based Adaptation: We define the divergence
vector for each site model as the difference between the local model trained on
that site and the geometric median model. For each model Mi, the divergence
vector ∆i is computed as: ∆i = θi−θ∗ where θi represents the parameter vector
of the locally trained model at site i, θ∗ is the geometric median computed in
Step 1, and ∆i represents the site-specific deviation from the geometric median.
This vector captures how much each model deviates from the robust median rep-
resentation and serves two key purposes: (A) Dynamic Model Weighting:
It adaptively assigns importance to the model contributions of each site in the
final weighted averaging step. A model with a small divergence vector is likely
to be more stable and reliable, whereas a model with a large divergence vector
may reflect domain-specific biases or noise. We use the magnitude of the diver-
gence vector to assign dynamic weights αi to each site model, allowing models
to contribute proportionally based on their distance from the geometric median
where αi = exp(−λ∥∆i∥2). λ is a scaling factor that controls the influence of the
magnitude of the divergence vector, ∥.∥2 is the L2-norm. The final normalized
weight for model i is: α̃i =

αi∑N
j=1 αj

. The final merged model θf is computed as:

θf =
∑N

i=1 α̃iθi. This adaptive weighting reduces the effect of noisy local models.
(B) Selective Parameter Retention: The divergence vector is also utilized
to localize normality information at the parameter level. Each parameter θp is
retained only if its weight magnitude exceeds a γ−rescaled magnitude of the
divergence vector, as it likely represents a confident and stable feature. Other-
wise, it is replaced by the corresponding geometric median parameter to prevent

excessive deviation from the global consensus. θpf =

{
θpi , if |θpi | ≥ γ|∆p

i |
θ∗p, otherwise.

3 Experiments and Results
Dataset and Experimental Settings The five datasets used in this work are
fetal heart ultrasound video sweeps collected from five hospitals: John Radcliffe
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Hospital (Oxford, UK) (Site 1), St George’s University Hospital (London, UK)
(Site 2), Royal Brompton Hospital (London, UK) (Site 3), Gold Coast Hospital
(Queensland, Australia) (Site 4) and Chelsea & Westminster Hospital (London,
UK) (Site 5). Data were acquired using 10 different ultrasound machines by sono-
graphers and fetal cardiologists. Healthy fetal US videos from Sites 1–3 (8,878,
16,074, and 1,573, respectively) were used to train the model. The evaluation
set comprised a mix of normal and abnormal cases (667, 2,088, and 667, in total
respectively), with the abnormal cases comprising instances of COA and HLHS.
Videos from Sites 4 and 5 (29 and 18 samples) were reserved for zero-shot testing
and comprised normal cases along with four other anomalies, viz., RAA, LSVC,
VSD, and CM. All videos (mean length: 125 frames) were pre-processed with an
automatic cropping model to extract the heart region.
Training and Implementation Details During training, we randomly sam-
pled a clip of 64 frames per video with a sampling rate of 3, while during eval-
uation we uniformly sampled N clips from each video to extract features. A
KNN classifier was then applied to these clip features, classifying a video as an
anomaly if any clip was flagged abnormal. For zero-shot evaluation, we extract
CLS token features from the STUD model’s teacher encoder and use a weighted
kNN classifier with k=20, selected based on peak F1-score on the validation set.
For self-distillation, we used 2 global crops (size 224) and 8 local crops (size
96), applying spatial transforms: color jittering, solarization, Gaussian blur and
varying temporal sampling rates for both crop types. All models were trained
for 200 epochs on a RTX6000 GPU (VRAM 25GB) with a batch size of 12 and
a cosine learning rate schedule with a 5e-04 initial learning rate. Scaling factor
λ was fixed at 0.005 via grid search.

3.1 Performance analysis of site-specific Video Anomaly Detection

Table 1 shows the comparison of our model (trained and tested individually
at each site) with two baseline methods viz., TimeFormer [9] (w/ supervised
pre-training) and VideoMAE [25] (w/ self-supervised pre-training) in detecting
normal and abnormal fetal heart clips. Our model provides a favorable trade-
off between computational efficiency and predictive performance. TimeFormer
achieves slightly higher accuracy for some sites at the cost of 10x more tokens.
VideoMAE underperforms compared to our method and TimeFormer for all
internal sites. The highest overall F1-score of our model shows its best gen-
eralization capability and most stable performance across different sites while
reducing computational costs. Figure 3 shows a visualization of the attention
maps from the final layer. This demonstrates effective localization of our model
on sequential US video frames around the tricuspid valve, foramen ovale flap, and
inter-ventricular septum which are key anatomical structures for CHD detection.

3.2 Performance analysis of Model Merging

Evaluation on sites 1-3 Table 2 shows the performance (precision and F-1
score) of the model built using DiVMerge on sites 1, 2, and 3, compared to the
centralized model (i.e., trained on data combined from all sites) and individual
models (i.e. models trained locally on their own sites). We also compare with 5
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Table 1. Performance of site-specific models for CHD detection in sites 1-3

Model # tokens
Site 1 Site 2 Site 3 Average

Prec F1 Prec F1 Prec F1 Prec F1

TimeFormer 12522 (100%) 40.00 57.14 81.13 88.61 89.37 93.85 70.17 79.87
VideoMAE 6272 (50%) 43.48 46.51 69.95 78.62 88.13 93.09 67.19 72.74
Ours 1176 (9.39%) 48.72 64.41 87.13 90.97 83.84 90.14 73.66 82.20

SOTA model merging methods, viz., Model Soup (2022)[30], Task vector (2023)
[7], Ties Merging (2023) [31], DARE (2024) [33], Model Stock (2024) [8]. Note
that all SOTA methods other than Model Soup need a base model for task
vector computation whereas our merging strategy does not require one. This
enhances the usability and potential scope of application of our model, includ-
ing for scenarios where a base model is unavailable. We do not compare with
Federated Learning methids as our approach assumes a single communication
round, with fully trained local models available at each site. We observe that
divergence-guided merging of models (ours) is almost as good as or better than
the model built from centralized data. In addition, the overall performance of
our model is higher than that of individual local models. While performance
slightly drops with respect to individual models for Site 2 (which has the high-
est amount of data), our model outperforms individual models trained on Sites 1
and 3, which have less data. The improvement in precision is 3.83% for Site 3 and
4.06% for Site 1. This reveals a benefit of model merging for sites with limited
data availability. In addition, this shows that our merged model eliminates the
need to store site-specific models. While Model Soup and other SOTA merging
techniques have a slight performance drop due to model drifts induced by het-
erogeneous sites, our model shows overall stable performance. This demonstrates
that the divergence vector can effectively mitigate the inter-site model conflicts.

Table 2. Performance comparison of model merging for sites 1-3. (B.M = Base Model)

Model B.M.
needed?

Site 1 Site 2 Site 3 Average
Prec F1 Prec F1 Prec F1 Prec F1

Centralized - 50.00 65.52 87.30 91.20 89.45 93.98 75.58 83.57
Individual - 48.72 64.41 87.13 90.97 83.84 90.14 73.23 81.84

Model Soup [30] No 41.30 57.58 86.75 89.79 86.34 92.45 71.74 79.94
Task Vector [7] Yes 35.19 51.35 76.86 88.53 88.52 93.54 66.85 77.00
Ties Merging [31] Yes 32.60 44.44 79.45 85.98 89.42 93.50 67.16 74.64
DARE [33] Yes 32.60 44.40 83.00 86.80 88.40 93.60 68.00 74.93
Model Stock [8] Yes 36.70 52.20 84.27 88.11 89.68 94.18 70.21 78.16
Ours (γ = 0.01) No 52.78 67.86 86.50 90.18 87.67 92.31 75.65 83.45
Ours (γ = 0.1) No 52.78 67.86 86.21 89.64 87.67 94.18 76.22 83.89

Evaluation on sites 4 and 5 Sites 4 and 5 are different geographical loca-
tions and cover different patient demographics to those used to train the merged
model. Evaluation of our merge model on sites 4 and 5 data is shown in Tab. 3
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Fig. 4. Confusion matrices illustrating the performance of various models on external
sites 4 and 5. The results indicate that the Centralized Model and Model 1 struggle
to detect most abnormal cases, while Model 3 frequently misclassifies normal cases as
abnormal due to domain shift. In contrast, our model achieves the best performance,
accurately distinguishing most normal and abnormal cases even with domain gap.

and Fig. 4. These show that our model generalises well to these new data sce-
narios where there are domain shifts due to different ultrasound scanners and
data acquisition procedures at these sites. The centralized model and Model 1
fails to detect most abnormal cases resulting in an overall F1 score of 23.55 and
20.0 respectively. By contrast, Model 3 considers almost all abnormal cases as
healthy hearts. Model 2 performs better but misidentifies 15 out of 20 healthy
samples as CHD. Our model achieves the best performance, improving on the
centralized model by 20% and 54.6% in accuracy and F1 score respectively.
Table 3. Performance comparison of merged model w.r.t. baselines on Sites 4 and 5

Model
Site 4 Site 5 Average

Accuracy Prec Recall F1 Accuracy Prec Recall F1 Accuracy Prec Recall F1

Centralized 72.0 0.0 0.0 0.0 50.0 80.0 33.3 47.1 61.0 40.0 16.7 23.5
Model 1 72.4 0.0 0.0 0.0 50.0 100.0 25.0 40.0 61.2 50.0 12.5 20.0
Model 2 65.5 43.8 87.5 58.3 61.1 72.7 66.7 69.6 63.3 58.3 77.1 63.9
Model 3 27.6 25.9 87.5 40.0 66.7 66.7 100.0 80.0 47.2 46.3 93.8 60.0
Ours 89.7 85.7 75.0 80.0 72.2 88.9 66.7 76.2 81.0 87.3 70.9 78.1

4 Conclusion
In this work, we have introduced a novel privacy-preserving, zero-shot CHD de-
tection framework that leverages self-supervised video normality learning (STUD)
and a novel divergence vector-guided model merging (DiVMerge) technique to
overcome the challenges of scarce labeled data and cross-hospital privacy con-
straints in fetal US. Evaluation with real-world fetal US datasets from five hos-
pitals demonstrates that our method achieves superior performance than SOTA
methods in detecting CHD anomalies. Compared with a model built with cen-
tralized data, our merged model achieves a 20% improvement in accuracy and a
54.6% increase in F1-score on unseen test data sets, highlighting its strong zero-
shot generalization capabilities even under domain shifts caused by variations in
ultrasound scanners, acquisition procedures, and patient demographics.
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Our results highlight that model merging can serve as a viable alternative to
centralized learning in privacy-sensitive clinical settings. Our experiments show
that model merging has the potential to improve performance particularly for
sites with limited data through the knowledge acquired from models trained on
other sites via merging. Another notable observation is that our merged model
significantly outperforms model trained with centralised data by mitigating do-
main shifts, thanks to its adaptive weighting of site-specific models and the
resolution of inter-site model conflicts via the proposed divergence vector.
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