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Abstract. Reducing MRI scan times can improve patient care and lower
healthcare costs. Many acceleration methods are designed to reconstruct
diagnostic-quality images from sparse k-space data, via an ill-posed or
ill-conditioned linear inverse problem (LIP). To address the resulting am-
biguities, it is crucial to incorporate prior knowledge into the optimiza-
tion problem, e.g., in the form of regularization. Another form of prior
knowledge less commonly used in medical imaging is the side information
obtained from sources other than the current acquisition. In this paper,
we present the Trust-Guided Variational Network (TGVN), an end-
to-end deep learning framework that effectively and reliably integrates
side information into LIPs. We demonstrate its effectiveness in multi-coil,
multi-contrast MRI reconstruction, where incomplete or low-SNR mea-
surements from one contrast are used as side information to reconstruct
high-quality images of another contrast from heavily undersampled data.
TGVN is robust across different contrasts, anatomies, and field strengths.
Compared to baselines utilizing side information, TGVN achieves supe-
rior image quality while preserving subtle pathological features even at
challenging acceleration levels, drastically speeding up acquisition while
minimizing hallucinations. Source code and dataset splits are available
on github.com/sodicksonlab/TGVN.
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1 Introduction

Magnetic Resonance Imaging (MRI) is a mainstay of medical diagnostic imag-
ing, thanks to its flexibility, its rich information content, and its excellent soft-
tissue contrast. An MR scanner collects measurements in frequency space (a.k.a.
k-space) that encode the body’s response to applied electromagnetic fields, typ-
ically with multiple receiver coils capturing distinct views modulated by their
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Fig.1: TGVN reconstruction with side information: (a) Visual representa-
tion of an MRI reconstruction LIP. (b) Overview of trust-guided disambiguation
of solutions to the LIP. We used different contrast-weighted measurements as
side information. However, side information can originate from various sources.
(c) TGVN: A cascade of T' elements connected in series. (d) Components of
each element in the cascade—data consistency (DC, parametrized by 7n), am-
biguous space consistency (ASC, parametrized by p,~,d), and refinement (&,
parametrized by §)—are shown along with their inputs, outputs, and the final
aggregation. ¢ and H are the U-Net [25] models. TGVN’s key novelty is the
ASC module which incorporates side information s safely through projection
P onto the ambiguous space of A without perturbing the trusted space.

individual sensitivities, and this process is mathematically described by a linear
map called the forward operator. The acquired k-space measurements are then
used to reconstruct a spatially resolved image by solving the corresponding lin-
ear inverse problem (LIP). Despite MRI's superior diagnostic capabilities, it is
comparatively time-consuming and costly, which limits its overall accessibility.
Reducing the time it takes to acquire an MR scan is an important practical
problem that can improve patient care by limiting patient discomfort, reducing
costs, and improving accessibility of this imaging modality. One way to reduce
scan time is to acquire fewer k-space measurements. The challenge then becomes
reconstructing high-quality images from limited data by solving the correspond-
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ing ill-conditioned/ill-posed LIP, which admits many mathematically feasible
solutions, most of which fail to capture essential anatomic and clinical details
accurately (see Fig. [Ia)).

Researchers have proposed various solutions, including compressed sensing
[2021] and deep learning (DL) approaches [I3JI0ITI29I33] which integrate tra-
ditional optimization techniques with deep neural networks. Another approach
to eliminating degenerate solutions to these LIPs involves leveraging additional
contextual information (i.e., side information), that is typically readily available
in real-world scenarios. The nature of side information is problem-dependent,
and it can originate from multiple sources. For example, data associated with
prior scans of the same patient can serve as side information, as can images
gathered during the same scan but associated with an imaging pulse sequence
of different contrast than the target pulse sequence.

In this work, we propose a novel, end-to-end trainable deep learning method
that efficiently and reliably integrates side information to solve LIPs, as illus-
trated in Fig. [II Our method, called the Trust-Guided Variational Network
(TGVN), uses the side information only to disambiguate the subspace of solu-
tions that the forward operator cannot reliably distinguish based on the mea-
sured data. We demonstrate the effectiveness of our method in the challenging
domain of multi-coil, multi-contrast MRI reconstruction, where incomplete or
low-SNR measurements with complementary contrast weighting are used as side
information to reconstruct images with a different target contrast from heav-
ily undersampled k-space measurements across different anatomies and field
strengths. Compared to recently proposed DL-based solutions, our method lever-
ages side information more efficiently and reliably, preserving fine anatomical and
pathological details obliterated by other methods at high acceleration levels, and
achieving statistically significant improvements in reconstruction performance.

2 Background

2.1 Deep Learning for Multi-coil MR Image Reconstruction

Let k denote the fully-sampled k-space measurements, which represent Fourier
coefficients of the structure of the continuous object being imaged. We define
a discrete estimated MR image x, such that k = F (x) + ¢, where € is the
measurement noise and F denotes the Fourier transform operator. In multi-
coil acquisition (a.k.a. parallel imaging) [27123], the scanner captures multiple
views of the anatomy modulated by the sensitivities S; of the receiver coils.
Multi-coil k-space measurements are given by k; = F (5;x) + ¢;, for each i €
{1,2...,N.}, where ¢; is the measurement noise for coil i and N, denotes the
number of coils. To simplify notation, we aggregate the k-space data from all
coils into a single tensor k = (ky,...,ky. ) and define the expand operator
E:x— (F(51%x),...,F (Sn.x)). To accelerate MRI acquisition, fewer k-space
samples are acquired, which we denote by a binary mask M. The undersampled

k-space measurements can be denoted as k = Mk = (Mﬂl, e ,MKNC>, and
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the forward operator A is equal to Mo&. That is, k = Ax+¢ = (Mo &)x+¢,
where € denotes the measurement noise in the undersampled k-space.

When k is undersampled, the LIP of estimating x from undersampled mea-
surements is often formulated as a regularized least-squares problem, i.e., X =
argmin, 1| Ax —k||3 + ¥ (x), where ¥(-) denote a regularization function that
imposes certain constraints on the possible solutions x.

In DL-based MRI reconstruction methods, such as the End-to-End Varia-
tional Network (E2E-VN) [29], one learns a regularization function from the
training data to maximize a desired similarity metric between the reconstructed
image X and the ground truth. Specifically, E2E-VN starts with an initial es-
timate x° of the solution to Ax = k, and uses the Landweber method [16]
to iteratively refine its estimate. More formally, starting with x° = APk, it
executes the following sequence of steps for a total of T iterations: x!t! =
xt — AP (Ax? — k) — & (x!;6"), where A is the Hermitian adjoint of A, n’
is the step size, and &(-;0") is a neural network with parameters 6*, represent-
ing the gradient of ¥. At the end of iteration T, we obtain x” parameterized
by © = {6°,...,07-1 n° ..., nT~1}. Assuming access to ground truth x*, pa-
rameters © are learned in a supervised manner to maximize a desired similarity
between x’ and x*.

2.2 Related Work

Image reconstruction with side information has a rich history beginning in the
1990s. [8] introduced an emission image reconstruction method that weights a
Gibbs prior with MR~derived anatomical boundaries. [9] proposed a Bayesian
reconstruction of PET and SPECT with the aid of prior information derived
from registered MR images of the same slice. [3] presented a Bayesian method
for simultaneously segmenting and reconstructing ECT images utilizing high-
resolution anatomical information from other imaging modalities.

Multiple studies have proposed methods that use data from complemen-
tary contrasts as side information to accelerate MRI—reconstructing the target
contrast by leveraging information from other contrast(s). Some of the earlier
attempts utilized handcrafted priors [2[12J6]. Later, dictionary-learning-based
methods [28/17] and end-to-end DL-based models were proposed [34I36U7ITE].
Recently, generative models utilizing side information were introduced [5IT4U19].
Synergizing the range-null space decomposition with DL was first explored in
[26], and later works have explored its potential in relevant tasks and domains
[30/3114]. Despite notable advancements, existing methods for solving LIPs that
incorporate side information still struggle with highly undersampled data, of-
ten leading to degraded image quality or hallucinations. The former can be at-
tributed to a lack of efficiency in exploiting side information (i.e., insufficiency to
disambiguate the solution space), while the latter represents over-reliance on it.
Consequently, harnessing the full potential of side information while mitigating
hallucinations remains an open problem that can have a transformative impact
on healthcare.
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Table 1: Experiments: Each line is a single experiment. Undersampling, in
either a random or a uniform pattern, was performed along the phase-encoding
(PE) direction. Center frequency (CF) is the portion of fully sampled central PE
lines. For knee experiments (K1, K2, and K3), acceleration was achieved solely by
undersampling. For brain experiments (B1 and B2), the total acceleration factors
include both undersampling (18 x and 15x for main information) and reduction
in the number of repetitions (2x and 3x for main, 3x for side information).

Main information Side information
Exp. Contrast Acceleration CF Contrast Acceleration CF
K1 PDFS Random-20x 3% PD Uniform-2x 0%
K2 PDFS Random-14x 3% PD Uniform-3x 0%
K3 PDFS Random-6x 5% PD Uniform-3 x 0%
B1 FLAIR Uniform-36x 2% T2 3x -
B2 T1 Uniform-45x 2% T2 3% -

3 Trust Guided Variational Network (TGVN)

Data consistency alone may not suffice to resolve inherent ambiguities in the LIP
solution space, particularly at high accelerations where otherwise effective DL
reconstruction methods have been observed to fail catastrophically [24]. Here we
introduce the concept of ambiguous space consistency. We focus on using side
information to resolve the ambiguous space characterized by the small singular
values of A, since these components of the problem tend to amplify noise and
otherwise introduce uncertainty into prospective solutions.

Let x, be a particular solution to Ax = k and let Y, o;u;v represent the
singular value decomposition (SVD) of A. Given a small positive threshold 4, we
define the ambiguous space as the subspace spanned by the right singular vectors
v; with corresponding singular values o; smaller than §, and denote it as Ws(A).
Observe that if we add any unit vector x, € W;(A) to x,, the data inconsistency
loss || A(xp+%4) —k||3 can at most be §%. In other words, perturbation can create
only minor data inconsistency. However, only certain x, maximize the desired
similarity between (x,+x,) and x*, indicating that, once a particular solution is
found, images from Ws(.A) introduce ambiguity in the reconstruction problem.
Inspired by this observation, we propose to explicitly learn a constraint that
removes undesirable solutions from Ws(A).

Our idea is to project x onto Ws(.A) via the orthogonal projector Ps to ob-
tain x,, and to guide x, to be maximally consistent with the side information
s using a learnable module H parametrized by . That is, we add a squared
Euclidean distance constraint ||Ps x — H (s; ) ||§ to the regularized least-squares
formulation to obtain X = arg min, 3| Ax — k|3 + £ |Psx — H (s; N5+ ¥ (x).
As the added constraint involves only a squared Euclidean distance, its integra-
tion into Landweber iterations is straightforward. Starting with xo = A k, we
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Table 2: Quantitative evaluation results: SSIM [32], PSNR, and NRMSE are
reported for knee (K1, K2, K3) and brain (B1l, B2) experiments using TGVN
and baselines. Each metric shows the mean and standard error over the test set.

Bold entries indicate the best performance, consistently achieved by TGVN.

Exp. TGVN DMSI MCVN MTrans E2E-VN
K1 84924019 56.99+£0.31 82.89+£0.21 80.84+0.23 81.33+0.23
S K2 85521019 5876+0.31 83.13+£0.21 81.25+0.22 83.40+0.21
n K3 88.02+0.17 64.354+0.31 86.47+0.18 8529+0.19 87.42+0.17
“ Bl 87.34+0.12 - 86.95+0.12 84.03£0.14 81.40=£0.15
B2 89.34+0.10 - 88.66 £0.12 85.72+£0.17 86.11£0.13
K1 3092+0.07 22224+0.10 29.97+£0.07 28.93+£0.07 29.30+£0.07
E K2 31.31+0.07 22.68+0.10 30.07+0.07 29.11£0.07 30.37 +0.07
% K3 32.89+0.08 24244010 31.95£0.07 31.26£0.07 32.59+0.07
A Bl 30.81+0.08 - 30.75 £0.08 28.70+£0.08 27.14+0.08
B2 31.36 £0.07 - 30.94+0.08 2890£0.10 29.31£0.08
K1 0.140+0.001 0.397£0.004 0.157 £0.001 0.177 £0.001 0.170 & 0.001
% K2 0.134+0.001 0.376 +£0.004 0.155=+0.001 0.174 £0.001 0.150 +£ 0.001
S K3 0.112+0.001 0.31740.003 0.124 +0.001 0.135+0.001 0.116 + 0.001
% Bl 0.158 £0.002 - 0.159 £0.002 0.201 £ 0.002 0.240 £ 0.003
B2 0.162+0.002 - 0.171 +£0.002 0.218 £0.003 0.205 £ 0.002

execute the following sequence of steps for a total of T iterations.

t+1 _

X

x! — gt AT (Ax — k) — pf Ps (x' — H(s;7")) - (x5 6") .

trust-guidance

(1)

At the end of the iteration T, we obtain x” parameterized by 2 £ O U
16,7%, ..., 4T u®, ..., uT~1}. Assuming access to ground truth x*, the pa-
rameters (2 are learned in a supervised manner to maximize a desired simi-
larity between x7 and x*. Furthermore, we present an efficient approximation
of the exact orthogonal projector Ps, which bypasses the need for SVD com-
putation. This approach is crucial for managing the scale of the forward op-
erator, which may contain hundreds of thousands of rows and columns, mak-
ing explicit methods infeasible. For a set K, let 1x(x) denote an indicator
function that equals 1 if x € K and 0 otherwise. Given §, the exact pro-
jector can be written as Ps = Y, 1j0,5)(03) viv. In lieu of assigning binary
weights to the ith projection, we can weight them by §2/(62 + 02), and de-
fine P§ £ >, (pi_%VinH = (I+ (siz.,élH.A)fl7 where I : x +— x denotes the
identity operator. We can then calculate the approximate trust-guidance term
it (I_’_(S%AHA)_l (xt —
Gradient iterations [IT].

H(s;~")) efficiently using a small number of Conjugate
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Without Side Information Target Without Side Information  With Side Information Target

With Side Information

Fig.2: Using side information significantly enhances reconstruction
quality. Left: Coronal PDFS knee reconstructions (K1, 20x acceleration). Yel-
low arrows highlight subtle structures (e.g., meniscal tear, vastus lateralis mus-
cle), preserved only when side information is used. Right: Axial FLAIR brain
reconstructions (B1, 36x total acceleration: 18 x undersampling, 2x repetition
reduction). TGVN recovers fine neuroanatomical details (yellow arrows), match-
ing the ground truth, whereas key brain structures are homogenized without it.

4 Empirical Validation and Results

We designed experiments to answer two key questions: Q1) Is there benefit in
using side information? Q2) How effective is TGVN at utilizing the side infor-
mation? To answer Q1, we compared the reconstruction performance of TGVN
against E2E-VN of the same capacity that does not utilize side information.
Q2 was answered by comparing TGVN’s performance against several DL-based
baselines that also leverage side information: MTrans [7], MCVN [18], and DMSI
[19]. We also performed ablation studies to assess the impact of the projector
Ps on reconstruction quality and to document the robustness of TGVN to small
random misregistrations between main and side information. While the results
of these ablation studies further support the efficacy and reliability of TGVN,
we omit these details here due to space constraints.

In knee experiments (K1, K2, K3), we utilized a subset of data from the
multi-coil track of the fastMRI knee dataset [I535], consisting of 368, 30, and
30 volumes for training, validation, and test sets, respectively. Brain experiments
(B1, B2) utilized the M4Raw dataset [22]. In all experiments, we used patient-
level splits to avoid data leakage. For a fair comparison, TGVN and the baselines
were configured to have a similar number of trainable parameters (95M for K1-3,
and 67M for B1-2). All models were trained on 4x A100 GPUs for 100 epochs,
with parameters saved at each epoch. Each model took up to 10 days to train
per knee experiment and 2 days per brain experiment, and the model with the
best validation SSIM was selected for testing. Details regarding the experimental
settings, including the contrast and acceleration details, are provided in Table [T}

Fig. [2| (left) shows the reconstruction results for coronal PDFS knee images
with and without using side information. At 20x acceleration, side information
significantly aids reconstruction while its absence results in loss of fine anatomical
details highlighted by the yellow arrows. Fig. [2| (right) shows axial FLAIR images
of the brain. At 36 x total acceleration, side information markedly enhances the
reconstruction fidelity, whereas its absence results in loss of essential features.
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Main Information E2E-VN MTrans MCVN DMSI TGVN (Ours) Target
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Fig.3: Knee image reconstructions from K1 demonstrating TGVN’s
effective use of side information. TGVN produces high-quality images at a
challenging 20x undersampling, outperforming multiple recently-proposed DL-
based baselines. The meniscus tear (yellow arrow) is clearly visible only in the
TGVN reconstruction, despite being obscured in the fully-sampled side informa-
tion. Top: Full field-of-view images. Middle: Undersampling masks for main
and side information (left), and zoomed-in regions (center, right). Bottom:
Zero-filled reconstruction of undersampled side information used as input (left),
absolute difference maps (center) between the target image and various recon-
structions, using a consistent color map shown at bottom, and a fully sampled
image of the side information (right, shown for illustration only. Models only had
access to 2x undersampled side information in K1). TGVN exhibits the smallest
error and the best reconstruction metrics.

Fig. [3] compares TGVN reconstructions against several baselines using side
information. MTrans and MCVN exhibit significant blurring of anatomical fea-
tures, and DMSI suffers severely from noise amplification, which is seen clearly
in the absolute difference images. The output of TGVN is significantly superior:
both overall sharpness and assorted anatomical details are better preserved in
the TGVN reconstructions. Furthermore, the meniscus tear highlighted by yel-
low arrows in the zoomed-in regions is distinctly more noticeable with TGVN.
Notably, the meniscus tear is not well visualized in the image corresponding to
the side information, which demonstrates that the TGVN is not relying exces-
sively on features copied directly from the side information. Table [2] presents
quantitative results, showing that TGVN achieves the best performance across
all metrics with statistically significant improvements.

Overall, Fig. [2] and Table [2| address Q1 by demonstrating that relevant side
information can significantly enhance reconstruction quality, while Fig. [ and
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Table 2] answer Q2 by showing that TGVN leverages side information more ef-
fectively and reliably than existing methods having comparable model capacity.

5 Conclusion

We introduced the Trust-Guided Variational Network (TGVN), which demon-
strates the power of leveraging side information in solving LIPs, with specific
application to MR image reconstruction. Our key finding is that, when incor-
porated effectively, subject-specific side information can significantly improve
reconstruction quality and preserve anatomical and pathological features while
avoiding hallucinations, even at undersampling levels as high as 20x, and even
with moderately-undersampled or low-quality side information. Note that TGVN
is trained end-to-end, so side information cannot degrade the reconstruction
quality. In the worst case (i.e., s and x are conditionally independent given
k), TGVN simply learns to ignore the side information. So far, we have used
only complementary-contrast measurements from the same MRI exam as side
information. However, a wide range of other side information can be encoded as
needed then decoded into the image domain by the H block. Essentially, H maps
the side information into the complex-valued, coil-combined MR image domain,
making x — H (s;7) well-defined in the trust-guidance term. In future work, we
intend to incorporate prior images and text reports as side information.
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