MICCAI " RISIIEY VEISION 15:dvalldRIE O SPHING

Direct Inversion Formula of the Multi-coil MR
Operator under Arbitrary Trajectories

Junzhou Chen!23p<®, Anthony G. Christodoulou?®, and Zhaoyang Fan'P<

! University of Southern California, Los Angeles, CA 90089, USA
zhaoyang.fan@med.usc.edu
2 University of California, Los Angeles, CA 90095, USA
3 Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
junzhou.chen@cshs.org

Abstract. This study introduces a novel inversion formula for the multi-
coil MRI forward operator applicable to arbitrary sampling trajecto-
ries. Traditional MRI reconstruction leverages fast Fourier transforms
(FFTs) for Cartesian sampling and nonuniform FFTs for non-Cartesian
patterns. However, subsampled k-space reconstruction typically relies on
iterative least-squares (LS) solutions, which are computationally inten-
sive due to the complex structure introduced by multiple coil sensi-
tivities. We hypothesize that the MRI multi-coil forward operator ex-
hibits the low displacement rank (LDR) property, enabling an efficient
inversion using triangular Toeplitz operators with a computational com-
plexity of O(aN log? N), with « being a small integer. The hypothe-
sis is supported through numerical simulations. For demonstration of
the feasibility of such inversion formula, we propose a learning-based
approach to determine the necessary LDR parameters, demonstrating
successful forward and inverse operator representations across various
sampling patterns, including Cartesian and radial trajectories. The pro-
posed inversion formula offers a significant acceleration in MR recon-
struction, reducing computational complexity by a factor of approxi-
mately 26 compared to conventional conjugate gradient methods. The
proposed inversion formula will greatly enhance reconstruction speed
and simplify reconstruction pipelines, including iterative reconstructions
and deep learning solutions incorporating data-consistency layers. Fu-
ture work will focus on deriving the LDR parameters analytically to
further streamline the inversion process. The code is available at https:
//github.com/mikecjz/structured-nets.
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1 Introduction

The reconstruction of MRI image from fully sampled k-space is straightforward
with fast Fourier transforms (FFTs) for Cartesian sampling patterns and regrid-
ding with density-compensated nonuniform fast Fourier transforms (NUFFTs)
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for non-Cartesian sampling patterns. The reconstruction of subsampled k-space,
however, requires more advanced algorithm design. Most of the image reconstruc-
tion techniques have a common element: data consistency constraints posed as
SENSE-style [20] regularized least-squares (LS) subproblems entailing computa-
tionally expensive matrix inversions of the forward operator. Under single-coil
settings, the forward operator is circulant given Cartesian sampling trajecto-
ries [13] and is Toeplitz [2,6,29] given non-Cartesian sampling trajectories. Sim-
ple formulas exist for inversion of the forward operator under single-coil settings
for Cartesian and non-Cartesian trajectories [7,9]. However, there are generally
no practical avenues for direct inversion of multi-coil forward operators because
multiple coil sensitivities introduce channelwise shift variance, complicating the
originally well-structured single-coil forward operator. Therefore, solving these
LS problems often rely on gradient-based iterative algorithms [3,8,24] and is
often the most time-consuming step in MR reconstruction. In deep learning ap-
plications, the LS solution is often approximated by conjugate gradient (CG)
steps [1,32], potentially complicating network gradient back propagation.

To accelerate the reconstruction, many studies consider preconditioning
[5,13,14,19,22,25,27,30,31], a technique to improve the condition number on the
forward operator, and thus convergence can be achieved in fewer steps. We note
that with preconditioning, the number of evaluations of the forward operator is
reduced, but to a number larger than one. Additionally, most preconditioning
techniques increase computation at each iteration step and at the end of the iter-
ation, the inverse of the preconditioner needs to be evaluated. Direct solution to
the LS problem has been explored with hierarchically semi-separable solvers [4]
demonstrated in O(N) time complexity. However, the implementation of such
algorithm remains non-trivial.

In this study we aim to validate an inversion formula for the multi-coil MR
forward operator given a hypothesis that the multi-coil forward operator is not
strictly Toeplitz, but “Toeplitz-like”. Specifically, we hypothesize the operator
in question has a modified Toeplitz structure, possessing low displacement rank
(LDR) properties [11], which enables an easy formula for inversion involving only
triangular Toeplitz operators with an overall complexity of O(aN log2 N), with
« being a small integer. In this study we will provide rationale and introduce
empirical evidence to support this hypothesis. We will also demonstrate that
the inversion formula for the multi-coil operator achieves good inversion results
and that evaluation of the inversion formula can be done in roughly the same
floating point operations (FLOPS) as one evaluation of the forward operator.
Such inversion formula will dramatically accelerate solving the LS problem in
MR reconstruction compared to iterative methods and will also serve as an
alternative to the more complicated CG-based data consistency layer embedded
in any end-to-end MR reconstruction network for arbitrary trajectories.
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2 Theory

2.1 MR multi-coil forward operator

Consider the SENSE [20,21]-style LS reconstruction problem and its equivalent
normal equation:

& = argmin || Az — bl|2 = & = (A7 A) " ATp (1)

where 2 € CV is the image to be reconstructed, and b being the multi-channel
k-space signal. A = AFS with the diagonal matrix A being the subsampling
mask, F being the Fourier operator (either uniform or non-uniform), and S be-
ing the sensitivity maps. Note that A7 A = SH FHAH AFS and that FZAHAF
is Toeplitz under arbitrary sampling trajectories (Circulant if trajectory is Carte-
sian) [2,6,13,29]. The invertibility of A¥ A can be improved with regularization.
For example, consider the ¢;- norm regularized compressed sensing [15,16,18,33]
objective incorporating SENSE-style parallel imaging:

1
arg min §||Ax—b|\§—|—)\||tpx||1 (2)

where ¥ is a sparsifying transform (e.g. wavelet or total variation(TV)). Many
optimization techniques can be used to solve expression 2 including alternat-
ing directional method of multipliers (ADMM) [3] or split Bregman (SB) [§]
iterations. Using ADMM as an example, the iterative steps are the following;:

aF = (AT A+ p0 T )~ (AT 4 0T (25 — b)) (3)
=8y, (Wt 4+ uh) (4)
uF =k wph R (5)

where Sy, is the soft-thresholding operator with threshold A/p. The most time-
consuming operation is evaluating (A” A + p@H W)~ and is often solved with
CG. Note that W is simply the identity if ¥ is wavelet transform or tridiagonal
Toeplitz if ¥ is TV.

In this paper, we define A” A, or its regularized variant (e.g. AT A+ p@H @),
as the MR multi-coil forward operator.

2.2 Displacement rank

Let Z be the lower shift matrix:

0 0 0 0
1 0 0 0

Z=10 1 (6)
' 0 0
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with ones only along the subdiagonal. Define the displacement operator with
respect to Z :
VzX=X-7XZ" =R (7)

it can be shown that any Hermitian Toeplitz matrix 7" will have a rank-2 residual
after the displacement operator.

VT =

t1 ta  tz oot 00 0 -0 ty taty -ty
ety oty 0ty ta ---tn_1 tHoo---0 .
e 4 oty |0ty oty o _ [tHO0 -0 (8)
t oty 0ttty thoo -0

Then, Toeplitz matrices are said to have displacement rank of 2. Following
this property, a matrix 7" is defined to be Toeplitz-like if it has low displacement
rank (LDR) o < N.

2.3 Inversion of LDR matrices

Kailath et al. [10,11] showed that if a matrix T has a displacement rank a, its
inverse 7! also has the same displacement rank «. Furthermore, both T and
T-1 can be calculated by sum of products of Toeplitz matrices. Using 7! as
an example:

T = ZL (9:) L™ (hs) (9)
i=1

where L(v) denotes a lower triangular Toeplitz matrix whose first column is v
and that

VT~ ' =GH" (10)
given G € CV*® and H € CN*® are a set of vectors G = [g1,92,.-,0al
H = [hy, ha, ..., ha]. The complexity to evaluate T~ is therefore O (aNlogQN).

2.4 LDR hypothesis of the MR multi-coil forward operator

Hypothesis 1 The multi-coil MR operator in the form of
Nco’il
A A=N" sHTs;
with T being a Toeplitz matriz, is Toeplitz-like and has low displacement rank
a & N with respect to Z and therefore has an inversion formula with complexity
@) (aNlogzN). It then easily follows that ZZV;Z‘” SHTS; + p0HW also has low
displacement rank a =~ a.
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In the following sections, we will use numerical simulations and experiments
to demonstrate that Hypothesis 1 might be true.

3 Methods

First, following from section 2.3, it is sufficient to demonstrate the forward opera-
tor A¥ A has low-displacement rank as we know its analytical expression. For this
task, we use numerical simulation to show this is true. The simulation is based
on the fully sampled 2D multi-coil kspace data from the fastMRI dataset [12].
The k-space data is trimmed to the center 128 x 128 for ease of calculation. A
set of coil sensitivity maps are estimated using the center 24 x 24 k-space with
ESPIRIT [28] without any eigenvalue thresholding to ensure Zivzci’” SHS = I
Without loss of generality, a 1D line from the center of coil sensitivity maps is
used to simulate 4x Cartesian undersampling in 1D. We then analyze VA" A
with singular value decomposition (SVD).

Second, assume A" A and (AH A)f1 has low displacement rank with respect
to Z, then the residual result of the displacement operation Vz, in the form
of outer products GH is unknown. Knowing G, H is necessary to evaluate
AP A or (AHA)_l. Therefore, we propose to treat G, H as parameters that
can be learned from simulated data. For this task, we first reconstruct a fully
sampled 2D image z € C'28%128 from the 128 x 128 k-space via inverse FFTs
and coil combination. Then we simulate three types of sampling pattern; 1) a
2x Cartesian undersampling pattern, 2) a 4x Cartesian undersampling pattern,
3) a non-Cartesian 280-spoke radial sampling data with golden-angle ordering.
The output of the forward operator is then simply denoted as A¥ Axz. Then we
initiate G, H, with a fixed rank o randomly and build the "% | L (g;) L? (h;)
operation using padded FFTs as a single network layer in PyTorch and learn
G, H via standard gradient back propagation. Switching between = and AH Ax
as inputs and outputs, we can train Y 5 | L (g;) L7 (h;) to represent both the
forward and the inverse process per section 2.3. The PyTorch implementation is
built upon the infrastructure provided by Thomas et al. [26].

Training was done on a Linux server with 96 core intel Xeon CPUs, Nvidia
GeForce 3090 (24GB) and 256GB RAM. Learning rate is 3 x 10", optimizer
is AMSGrad [23] with momentum 0.9. Only one image slice is sufficient for this
learning process.

4 Results

Figure 1 demonstrates the absolute value of the singular value spectrum of
VzAH A simulated with 4x 1D Cartesian undersampling with coil sensitivi-
ties. The displacement rank of the multi-coil forward operator can be clearly
seen as a = 6, which we will use for all trainings going forward. Figure 2 demon-
strate the learned inverse operator output. Figure 3 demonstrate the comparison
between the learned inverse LDR format operators and 20 CG iterations with-
out preconditioning and starting with 0, and their difference compared to the
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Fig. 1. The singular values spectrum (first 15) of the displacement operator output of
the multi-coil operator, i.e. VzA® A simulated with 4x 1D Cartesian undersampling
with coil sensitivities.
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Fig. 2. Learned LDR forward operator output under different sampling patterns and
the difference to the target.

ground truth. For all trajectories, each epoch is found to take 6 - 7 ms. It took
4k epochs for the Cartesian undersampling cases to converge and 24k epochs for
the non-Cartesian case to converge.

5 Discussion

In this work, demonstrate a new formula to invert the multi-coil MR forward op-
erator. We utilize the established theory that operators with underlying Toeplitz
structure, in the form of low displacement rank with respect to the lower shift
matrix Z (defined in expression 6), has an inversion formula involving only sum
of products of triangular Toeplitz matrices, which can be implemented with
FFTs with O (aN log? N ) complexity. We provide some empirical evidence that
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Fig. 3. Comparison between the learned inverse LDR format operators output under
different trajectories and 20 CG iterations without preconditioning and starting with
0, and their difference compared to the ground truth.

the MR multi-coil operator does at least approximately possess the low displace-
ment rank property. Then we proceed to showcase the feasibility of this inversion
formula. The inversion formula requires the low-rank parameters be known prior
to evaluation. In the case of the multi-coil forward operator, these parameters for
its inverse are not currently found to be immediately derivable. To get around of
this limitation, we propose to learn these parameters from numerical simulations
and with the gradient back propagation provided by PyTorch. The learning pro-
cess appears to be successful; it can be seen in the results that the LDR operators
are successfully learned to perform the inverse operations. The error seems to
accumulate around the boundary between brain and air. We hypothesize that
this is because the sharp transition in the boundary region is making the learning
process more difficult.

The convergence of the learned operators for Cartesian sampling trajectories
appears to be quicker than the non-Cartesian radial sampling pattern. We again
hypothesize that it is because both the forward and inverse operator of the radial
sampling pattern has a higher condition number, leading to slow convergence, a
phenomenon well documented in classic iterative algorithms. We note that the
learning process is only intended for the demonstration of the inversion formula’s
feasibility. For practical use, the LDR parameters need to be derived efficiently
either analytically or through a greatly accelerated learning process, which we
consider to be outside the scope of this study.
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This inversion formula will have several potential impacts to the field of MR
reconstruction. First there is a direct acceleration benefit to the reconstruction
speed. For example, an inversion of the forward operator under non-Cartesian
trajectory using, for example, 20 CG steps and N,,; = 16 coils, will have the
computation complexity O (20 x 16 x Nlog*N ), whereas the proposed inversion
formula will have complexity O (2 X ax N 1og2N ) With o = 6 in our demon-
strated case, there is an acceleration factor of 26.

Second, the easy inversion formula will help reduce implementation difficulty
of end-to-end MR reconstruction network involving f5- norm data consistency
layers for both the Cartesian and non-Cartesian trajectories. Previously, the
solution to the data consistency layers involves hand-building CG iterations [1]
and using backward gradient-enabled NUFFT packages [17] for non-Cartesian
trajectories. Our proposed formula on the other hand, is a direct, lightweight
linear operation that will only require FFTs, which is a standard built-in function
in both TensorFlow and PyTorch.

6 Conclusion

We have showcased an easy formula for the MR multi-coil forward operator
and its inversion under arbitrary sampling trajectories. Building on the theories
of low displacement rank and whose parameter can be learned from simulated
data, such formula will significantly speed up MR iterative reconstruction and
potentially provide a lightweight and direct solution for deep learning MR recon-
struction learned end-to-end with data consistency layers. The learning process
of the LDR operator is only for demonstration of feasibility. The practical so-
lution to quickly derive the necessary parameters will be investigated in future
studies.
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