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Abstract. Many biomedical data exhibit intrinsic graph-like properties,
making graph neural networks (GNNs) widely adopted modeling tools.
The brain arterial network (BAN) represents the most complex arterial
network in humans, where conventional GNNs struggle to capture critical
long-range relationships. Recent graph transformers have enabled mod-
eling of these long-range dependencies through attention mechanisms;
however, they face challenges in incorporating hierarchical information,
especially when strong anatomical priors exist within the graph struc-
ture. While some approaches have attempted to integrate hierarchical in-
formation into graph transformers, they primarily focus on node feature
aggregation, despite BAN’s most clinically significant features residing in
edges rather than nodes. To address these limitations, we propose a hier-
archical graph transformer (HGT) with edge-aware structural encoding
that better incorporates anatomical and multi-scale structural informa-
tion. Our approach achieves state-of-the-art performance across all 11
tasks. This work lays the foundation for individualized risk assessment
that complements traditional systemic risk evaluation methods.
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1 Background

Cardiovascular disease remains the leading cause of death worldwide. Preven-
tion strategies predominantly rely on the Framingham Risk Score (FRS) to esti-
mate 10-year cardiovascular risk using systemic metrics such as blood pressure,
cholesterol, age, and smoking status [6]. However, the FRS evaluates only these
external factors while overlooking internal vascular imaging biomarkers that di-
rectly reflect vascular health. Although magnetic resonance angiography (MRA)
is widely employed to assess localized vascular pathology (e.g., stenosis), its ap-
plication in analyzing global vasculature structure remains limited. In particular,
the brain arterial network (BAN) represents one of the most complex vascular
systems in the human body; numerous studies have demonstrated its association
with aging, hypertension, and cognitive decline [23T3[4], yet research progress is
impeded by the network’s multi-hierarchical structure and the significant chal-
lenges in extracting full-brain BAN from MRA.

Recent research has demonstrated that human vasculature modeled by graph
neural networks (GNNs) can effectively capture disease-related patterns from
vascular graphs [22[18]. However, previous studies utilizing conventional GNN
architectures, such as Graph Convolutional Networks (GCNs) and Graph Atten-
tion Networks (GATs), have primarily focused on relatively small graphs[I7/10],
where their local message-passing operations prove insufficient for modeling
larger, complex networks like the BAN. Recent advancements in graph trans-
formers have addressed some of these limitations by leveraging global self-attention
mechanisms [T2J2005]; nevertheless, standard graph transformers lack the ex-
plicit capability to model hierarchical patterns due to inductive bias, partic-
ularly when the graph exhibits significant anatomical structure. Furthermore,
while several graph transformer variants have been proposed to incorporate hi-
erarchical information[I4], they typically emphasize node-feature aggregation,
whereas in BAN, the edge features—representing critical arterial attributes such
as radius, tortuosity, and length—are of paramount importance.

To address these methodological limitations in capturing the hierarchical
complexity of brain arterial networks, we propose two contributions:

1. We propose a novel hierarchical graph transformer (HGT) with edge-aware
structural encoding that leverages anatomical priors to capture both local
and global vascular patterns within BAN.

2. Our proposed method achieves state-of-the-art performance across 11 pre-
dictive tasks, demonstrating the robust association between BAN and car-
diovascular risk factors.
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Fig. 1: Architecture of the proposed hierarchical graph transformer (HGT) with
edge-aware structural encoding. The framework processes a vascular graph
through hierarchical structural encoding pathways, transforming edge features
into multi-level representations. These encodings are integrated with standard
transformer attention, producing structurally enriched attention for capturing
hierarchical information of the graph.

2 Methods

2.1 HGT with Edge-Aware Structural Encoding

We first propose a flexible module that can be appended to standard graph
transformer architectures [20] to incorporate prior structural information from
edge attributes, as shown in Fig[l] In our approach, we focus exclusively on edge
features (e.g., artery length, radius, and tortuosity) and generate a multi-level
structural encoding through two steps: (i) topology preserving reduction and (ii)
multi-level coarsening via heavy-edge matching [I].

Topology Preserving Reduction. Given a vascular graph G = (V, E)
with node set V and edge set F, we first simplify G using a topology preserving
reduction that retains all bifurcation and terminal nodes. For each edge e € E,
we define a feature vector f(e) = [l(e),r(e),7(e)], where £(e) represents the
vessel segment length, r(e) the vessel radius, and 7(e) the vessel tortuosity. In
our implementation, we apply a degree-2 node removal strategy to collapse linear
segments. This yields a simplified graph G(©) = (V)| E(®)) where each edge ez(-?)
represents an entire vessel segment between key nodes ¢ and j. The new edge
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attributes are aggregated as follows:
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where P(7,j) denotes the set of edges along the original vessel segment connect-
ing nodes i and j, and |P(%, j)| represents the number of edges in this set. This
reduction preserves the essential vascular branching structure while eliminating
redundant nodes from continuous vessel segments.

Multi-Level Edge Fusion. To capture multi-scale structural information,
we further coarsen G(*) via a heavy-edge matching (HEM) algorithm [I], gener-
ating a hierarchy of graphs

{G(h) — (V(h)»E(h))}hH:m

where V(") is the node set and E™ is the edge set at level k. At each level k,
an edge e € B with length ¢(e) and radius 7(e) is assigned a weight based on
a composite function:

r(e)?

m(e) = ma (2)

which favors the merging of segments that are thick and short—a biologically
meaningful heuristic for vascular networks. The HEM algorithm identifies a max-
imal matching of node pairs by greedily selecting edges with the highest weights,
then contracts the matched edges to form the next coarser graph G+, For
any two nodes 4, j in the original graph, we define the multi-level edge encoding
as

My = [m®(0,5), mDGg), .., mI G, 5)] € R, 3)

where m() (i,4) denotes the edge weight measure between the coarsened rep-
resentations of nodes i and j in G specifically m")(i,j) = m(ey,) where
u,v € V") are the respective mappings of nodes i, j after h levels of coarsening.
Structurally Enriched Attention. The multi-level edge encoding is then
processed to generate an attention bias. For each node pair (4, j), we define

bi; = MLP (Mij), (4)

where MLP is a trainable multi-layer perceptron that transforms the hierarchical
edge weights into a scalar attention bias. Following the GPS framework [20], the
graph representation matrix X € RNXdeat is first processed through a local
message-passing layer that aggregates both node and edge information, where
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N is the number of nodes and d,t is the feature dimension. The transformer
then computes
Q=XWqo, K=XWg, V=XWy, (5)

with Wo, Wk, Wy € Rteat Xdeat a5 learnable parameters. The self-attention is
then formulated as

T

QK
Attn(X) = softmax
( ) ( Vv dfcat

where the bias matrix B € RV*Y is constructed by stacking the scalars b;; for
all node pairs. Adding the bias directly to attention scores allows the model to
modulate attention based on multi-level structural information while preserving
the content-based attention mechanism of the transformer.

Visualization of Structural Attention. We extract interpretable insights
from our model by computing importance scores for nodes based on edge atten-
tion values. The edge importance scores are directly obtained from the attention
coefficients of our graph attention layers. Node importance is then derived by
accumulating the attention scores associated with each node’s connected edges:

+ B) v, (6)

Nodelmp(v;) = Z EdgeImp(e;;), (7)

eij €E(i)

where E(i) represents all edges connected to node ¢ and Edgelmp(e;;) represents
the attention coefficient after the softmax function obtained from Equation (6).
This approach allows us to visualize which nodes in the brain arterial network
are most influential for the model’s predictions.

2.2 Dataset Formation and Task Establishment

Cohort Description and Risk Factor Definitions. This cross-sectional anal-
ysis pooled baseline data from three East Asian cohorts [13/4]. A total of 402
participants were aged > 45 years with no history of cardiovascular events. Blood
pressure (SBP, DBP), Serum lipid profiles (HDL, LDL, total cholesterol), and
smoking /diabetes status were obtained through standardized laboratory assays
and questionnaires/medical records. The FRS was calculated to estimate 10-year
cardiovascular risk (0-1) [6]. All studies adhered to IRB protocols. The distri-
bution of cardiovascular risk factors across the cohort is illustrated in Fig(a).

Imaging Protocols and Graph Construction Process. 3D MRA images
were acquired using Philips, GE, and Siemens scanners at 1.5/3.0 Tesla, with
in-plane resolutions ranging from 0.35 mm to 0.5 mm and full brain coverage.
3D brain artery trace was constructed by [2]. Multiple reproducibility studies
were conducted to validate the trace reconstruction accuracy across imaging
protocols from various vendors and independent reviewer annotations [3U8/24].
Graphs were constructed using the networkx package [9]. Node features included
3D coordinates of artery trace, while edge features comprised artery radius,
length, and tortuosity. If the original BAN was not fully connected, a virtual node
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Fig.2: Overview of the BAN dataset. (a) BAN-Overview: Demographic and
clinical characteristics of the dataset, including FRS, gender, diabetes, hyper-
tension (HT), smoking status, and distributions of age, blood pressure (SBP,
DBP), and lipid levels (HDL, LDL, TC). (b) BAN-Library: A database con-
taining raw MRA images, artery segmentation, traced artery centerlines, and
graph representations, with corresponding metadata and extracted features.

was introduced to link disconnected components [II], with no additional node
or edge features assigned to the virtual node. Finally, node and edge features
were standardized per-subject to ensure consistency across the dataset. Detailed
process was shown in Fig{(b).

Prediction Tasks. Predictive tasks included classification of FRS levels
(<0.1, 0.1-0.2, >0.2), hypertension, diabetes, and smoking status; and regres-
sion for FRS, age, SBP, DBP, HDL, LDL, and TC. For regression tasks, we
report Mean Absolute Error (MAE) and the coefficient of determination (R?),
which quantifies the proportion of variance explained by the model. For classifi-
cation tasks, we evaluate performance using micro-F1, macro-F1, and Area Un-
der the ROC Curve (AUC); micro-F1 aggregates contributions from all classes,
while macro-F1 averages F1 scores across classes to reflect performance on less
frequent labels. Compared models included graph convolutional networks (GCN)
[15], graph attention networks (GAT) [21], graph transformer (GT) [5], and GPS

[20].

3 Experiments and Results

3.1 Experiments

Implementation Details. Experiments are conducted using a 5-fold cross-
validation strategy for both classification and regression tasks. Hyperparameter
tuning is performed via grid search managed by the Neural Network Intelligence
tool [16] with a cosine learning rate scheduler. All models—including our pro-
posed HGT and baseline models (GCN, GAT, GT, and GPS)—employ data
augmentation [25] with a multiplier of 5 to ensure fairness and an adequate
trade-off between training power and time. Our augmentation techniques add
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Fig.3: Visualization of node and edge attention importance in BAN for age
prediction across three subjects of increasing age (48, 67, and 88 years). The
intensity of red coloring indicates higher attention weights.

Gaussian noise (std=0.01) to node coordinates and perform random node sam-
pling to simulate variability in arterial density. H = 3 is used for hierarchical
encoding. The choice of H=3 was empirically validated through ablation stud-
ies across H € {1,2,3,4,5}. We found that H=3 provides optimal performance
while H>3 shows diminishing returns due to over-coarsening of vascular struc-
ture. All experiments are implemented in PyTorch [19] and PyTorch Geometric
[7], and executed on an NVIDIA RTX 4090 GPU.

3.2 Results

Regression and Classification Performance. Experimental results demon-
strate that all models perform reasonably well on both regression and classifi-
cation tasks, underscoring the value of our curated dataset. Notably, the HGT,
which builds upon the GPS[20], consistently outperforms other baselines in both
regression and classification, as shown in Table [I] and Table 2] This consistent
improvement highlights the critical role of our hierarchical structural encoding
in capturing complex patterns in the BAN.

Attention Visualization. Attention visualization in Fig[3] demonstrates
that age can be effectively represented through global BAN structure. Notably,
distal arterial branches exhibit higher attention weights, aligning with prior stud-
ies [2314].

Ablation Studies. Table [3] demonstrates our model’s effectiveness in FR
risk level prediction. Removing hierarchical encoding reduces performance, in-
dicating its importance for capturing multi-scale features. Without the virtual
node, information flow is disrupted. Removing BAN features (length, tortuos-
ity, radius) causes severe degradation, confirming these attributes’ critical role.
Using only bifurcation and endpoint nodes (post topology-preserving reduction)
similarly impairs performance. The last two columns show how BAN features
contribute significantly to the predictive task and demonstrate the unique value
of our comprehensive multimodal dataset.
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Table 1: Regression performance across tasks (MAE]/R?1)
Model Age HDL LDL TC SBP DBP FRS
4.81£0.38 4.48+0.40 4.74£0.45 4.47£0.50 5.03£0.81 4.49+£0.51 4.36+£0.27

GON 0.43£0.08 0.51+0.06 0.46+0.10 0.51£0.09 0.4040.18 0.51£0.08 0.53£0.05
GAT 2.4240.28 2.474+0.23 2.37£0.21 1.30£0.05 2.464+0.21 2.42+0.23 2.46+0.20
0.8440.03 0.83+0.03 0.84£0.03 0.95£0.00 0.83+0.03 0.84+0.03 0.84+0.03
GT 4.2940.42 3.954+0.37 4.2240.48 3.96£0.52 4.57+£0.79 3.98+0.49 3.84+0.31
0.65+0.07 0.7240.05 0.67£0.11 0.70£0.10 0.62+0.17 0.73+0.09 0.74£0.06
GPS 3.51+0.31 3.2240.23 3.44£0.37 3.10+£0.22 3.68+0.49 3.36+0.32 3.52+0.38

0.7240.05 0.7840.04 0.73£0.05 0.84+0.03 0.79+0.06 0.8140.05 0.82+0.04

HGT 2.1240.212.15+0.182.05+0.151.10+0.042.274+0.182.124+0.202.05+0.18
(ours) 0.88+0.020.87+0.030.89+0.030.97+0.000.86+0.030.88+0.020.89+0.02

4 Discussion & Conclusion

In conclusion, this work advances graph learning in the cardiovascular field by
introducing a novel HGT with edge-aware structural encoding that effectively
captures the complex structural information within BAN. We have developed the
first comprehensive multimodal full-brain BAN dataset enabling robust evalua-
tion across multiple prediction tasks. Our approach demonstrates state-of-the-art
performance throughout all predictive tasks, revealing strong associations be-
tween vascular structure and cardiovascular risk that conventional methods fail
to capture. These innovations collectively enhance our understanding of vascular-
systemic relationships while establishing a foundation for more precise, personal-
ized cardiovascular risk stratification that could significantly impact preventive
cardiovascular health. While promising, our method may not fully capture the ex-
tensive anatomical variability inherent to diseased populations (e.g., aneurysm),
potentially limiting robustness in cases with atypical BANs.

Clinical Limitations and Future Directions. While our method demon-
strates strong predictive performance, several limitations must be addressed for
clinical translation: (1) lack of prospective clinical validation in real workflows,
(2) absence of clinician evaluation of risk predictions, and (3) need for integra-
tion with existing clinical decision support systems. Future work should focus
on prospective clinical trials to validate the clinical utility of BAN-based risk
stratification.

Acknowledgments. This study was funded by the National Institutes of Health
(grant numbers 5ROINS127317-03 and 5R01NS125635-03).

Disclosure of Interests. The authors have no competing interests to declare that
are relevant to the content of this article.



Table 2: Classification performance across tasks (Micro-F1/Macro-F1/AUC)

Title Suppressed Due to Excessive Length

Model Smoking Diabetes HT FR Level
72.4044.38 74.384+4.69 74.38+4.14 74.38+4.14
GCN  71.1645.08 73.1945.34 73.43+4.65 73.431+4.65
81.79+2.12 82.51+2.83 82.36+£1.53 82.36+1.53
72.3943.72 71.374+6.63 71.144+1.90 69.631+3.46
GAT  71.12+4.30 69.41+7.44 69.64+1.54 67.76+£2.98
80.59+3.61 80.06£3.74 79.09+1.39 79.93+3.25
77.48+4.41 79.42+4.73 79.45+4.22 79.47+4.19
GT 76.21+5.12 78.24+5.29 78.51+4.71 78.49+4.68
82.85+2.18 83.58%+2.79 83.414+1.60 83.40+1.55
74.7148.51 74.684+10.36 70.68+8.45 74.68+8.31
GPS  72.8848.40 74.534+10.39 69.90+12.19 72.12+8.69
77.4244.12 80.75+£10.13 78.75+5.32 79.75+£10.92
HGT 75.64+1.70 76.84+1.45 76.53+1.39 76.23+1.23
(ours) 74.8241.61 75.354+1.42 75.244+1.36 74.924+1.26
83.23+1.41 84.1241.31 83.824+1.23 83.45+1.12

9

Table 3: Ablation studies on FR level prediction (Micro-F1/Macro-F1/AUC)

. w/o w/o w/o Endpts
Metrics Full Model Hi/er. Enc. Vi/rtual Node Ait. Feat. Bifulr)c. ’
Micro-F1 76.23+1.23 74.68+8.31 75.53+£1.20 52.45+3.41 50.67£1.51
Macro-F1 74.92+1.26  72.12+8.69 73.32+1.42 37.89+4.60 36.12+£1.72
AUC 83.45+1.12 79.754+10.92 81.15+£1.78 60.23+5.50 58.46+1.63
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