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Abstract. Intraoperative adverse events (IAEs), such as bleeding or
thermal injury, can lead to severe postoperative complications if unde-
tected. However, their rarity results in highly imbalanced datasets, posing
challenges for Al-based detection and severity quantification. We propose
BetaMixer, a novel deep learning model that addresses these challenges
through a Beta distribution-based mixing approach, converting discrete
TAE severity scores into continuous values for precise severity regres-
sion (0-5 scale). BetaMixer employs Beta distribution-based sampling
to enhance underrepresented classes and regularizes intermediate em-
beddings to maintain a structured feature space. A generative approach
aligns the feature space with sampled IAE severity, enabling robust clas-
sification and severity regression via a transformer. Evaluated on the
MultiBypass140 dataset, which we extended with TAE labels, BetaMixer
achieves a weighted F1 score of 0.76, recall of 0.81, PPV of 0.73, and
NPV of 0.84, demonstrating strong performance on imbalanced data. By
integrating Beta distribution-based sampling, feature mixing, and gen-
erative modeling, BetaMixer offers a robust solution for IAE detection
and quantification in clinical settings.

Keywords: Intraoperative adverse events - bleeding detection - bleeding
quantification - surgical injury detection - gastric bypass surgery

1 Introduction

Intraoperative adverse events (IAEs), such as bleeding, thermal injury, and me-
chanical injury, are rare but critical occurrences during surgery that can lead
to severe postoperative complications, including infection, organ dysfunction,
or even mortality. These events not only jeopardize patient safety but also in-
crease healthcare costs due to prolonged recovery times. Timely detection and
accurate IAE severity quantification are crucial for enabling prompt intervention
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and improving surgical outcomes [17]. However, traditional manual monitoring
by surgical teams is prone to human error, underscoring the need for auto-
mated, real-time detection systems [16]. Artificial Intelligence (AI) has emerged
as a promising tool for automating IAE recognition and quantification, offering
real-time feedback to surgeons [6]. Despite this potential, the rarity of TAEs re-
sults in highly imbalanced datasets, which pose significant challenges for training
effective AI models. Standard detection techniques often struggle with such im-
balances, and the inherent complexity of surgical procedures further complicates
the identification of deviations from normal workflow. Additionally, quantifying
the severity of IAEs—ranging from mild to critical—is essential for determin-
ing the appropriate surgical response, yet this aspect remains underexplored in
existing literature. Current approaches to surgical anomaly detection often fail
to address the diversity of IAEs or the importance of severity quantification,
limiting their practical utility in clinical settings [2].

To bridge this gap, we propose BetaMixer, a deep learning-based framework
designed for both IAE classification and their severity regression during laparo-
scopic Roux-en-Y gastric bypass surgery. BetaMixer leverages a Beta distribu-
tion to transform discrete IAE labels into continuous variables, enabling precise
severity regression on a 0 to 5 scale. To address class imbalance, the model em-
ploys Beta distribution-based sampling and regularizes intermediate embeddings
to maintain a structured feature space. A generative component aligns the fea-
ture space with continuous severity labels, while a transformer network classifies
IAEs and regresses their severity using a mean squared error (MSE) loss on
sampled predictions and ground truths.

We evaluate BetaMixer on the MultiBypass140 dataset [13], extended with
TAE annotations. Our model achieves state-of-the-art performance, particularly
for rare TAEs, with a weighted F1 score of 0.76, recall of 0.81, PPV of 0.73, and
NPV of 0.84. These results highlight the importance of temporal context and
continuous feature space modeling for accurate IAE detection and regression.

Our contribution is fourfold: (1) A unified framework for IAE classifica-
tion and severity regression in Roux-en-Y gastric bypass surgery. (2) A Beta
distribution-based method to model continuous severity from discrete annota-
tions, addressing class imbalance via MSE loss. (3) A generative component
to normalize feature space distributions, aligning with severity labels. (4) Su-
perior results over baselines, with temporal models outperforming frame-based
approaches, significantly improving IAE detection and regression across metrics.

2 Related Work

Detecting and mitigating Intraoperative Adverse Events (IAEs) is vital for im-
proving surgical outcomes [6]. TAEs, arising from factors like human error, equip-
ment malfunction, and patient responses, are rare in large video datasets, making
their detection challenging. They are often annotated with class labels [20, 9],
with their scale of severity often overlooked. The discrete nature of these annota-
tions doesn’t capture the continuous development of IAEs. Studies in other fields
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suggest that using distributions like the Beta distribution better models severity
uncertainty [15]. For their task proximity, anomaly detection methods, includ-
ing supervised [11, 4], semi-supervised [18], and unsupervised [1] approaches, are
employed for TAE detection. Traditional models combine CNNs and RNNs for
spatial and temporal tasks, while Transformers [5] have recently outperformed
them in capturing long-range dependencies. However, most existing work fo-
cuses on event classification [20, 7], leaving the quantification of IAE severity,
especially for conditions like intraoperative bleeding and injuries, largely unex-
plored. While resampling and reweighting techniques such as SMOTE [3] and
focal loss [14] address label imbalance, our regression-based smoothing offers an
orthogonal alternative.

3 Methods

This section presents the methodology for developing BetaMizer, a deep learning
model designed for the classification and regression of the severity of intraopera-
tive adverse events (IAEs) in Roux-en-Y gastric bypass surgeries. The goal is to
enhance timely surgical intervention and improve clinical outcomes by accurately
detecting IAEs and assessing their severity.

3.1 Problem Definition

Given a surgical video V = {f1, fa,..., fu} consisting of n sequential frames, the
task is to predict the TAE class C and severity S for each frame f; € V. Here,
C € {BL,MI, TI} represents the IAE categories (bleeding, mechanical injury,
and thermal injury), and S € {0,1,...,m} denotes the severity level, where m
varies by IAE type (e.g., m = 5 for bleeding). To predict (C;,S;) for frame f;,
we utilize a sequence of contiguous frames from the past k time steps, i.e., X; =
{fizk+1,---, fi}. The model learns a function F(X;) — (C;,S;) that maps the
current frame f; to its IAE class and severity, leveraging temporal information
from the preceding k frames.

3.2 Dataset

We utilize the MultiBypass140 dataset [13], which comprises 140 patient cases of
laparoscopic Roux-en-Y gastric bypass surgery. This dataset has been extended
with fine-grained annotations for IAEs, including their category and severity
[12], see Table 1. The annotations were performed by a board-certified surgeon
with over 10 years of visceral surgery experience, guided by the SEVERE in-
dex manual [10] to ensure consistency and accuracy. The dataset includes 782K
frames extracted at 1 fps, with 780K frames labeled as normal and 1,594 frames
annotated with IAEs (bleeding, mechanical injury, and thermal injury). Each
event is labeled with start and end times, along with severity score ranging from
0 to 5, where higher values indicate greater severity. The dataset is split into 80
videos for training, 20 for validation, and 40 for testing. Table 2 provides the
distribution of IAEs across clinical centers.
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Table 1: Clinical definition of IAE severity scores.

Severity  Bleeding Thermal injury Mechanical injury

Superficial penetration to "less vital" tis-

1 Very low amount of blood lost Superficial penetration to “less vital” tissue .
sue, needle poke to tissue

Deep penetration to “less vital” tissue or any or-
gan/tissue subjected to planned resection

3 Intermediate amount of blood lost Superficial penetration to “vital” tissue Superficial penetration to
Deep penetration to “vital” tissue to the level of
muscularis/parenchyma

Through and through injury to hollow organ or  Through and through injury to "vital" tis-
deeper parenchymal injury to solid organ sue

2 Low amount of blood lost Full-thickness injury

"vital" tissue

4 High amount of blood lost Deep penetration to “vital” tissue

Very high amount of blood lost

Table 2: Distribution of the IAEs across clinical centers present in the dataset.

Center Cases  # Frames Normal Bleeding Mechanical Injury  Thermal Injury
Strasbourg 70 464,973 426983 33634 3674 682
Bern 70 316,646 282204 28068 5691 683

3.3 Discrete to Continuous Severity Distribution

The severity levels in the dataset are annotated as discrete values, which are in-
herently imbalanced, as seen in Table 2. However, in real-world scenarios, severity
exists on a continuous spectrum. To better capture this variability and address
annotation noise, we propose transforming the discrete ordinal numbers into a
continuous distribution using the Beta distribution. The Beta distribution was
chosen due to its mathematical properties and flexibility in modeling probabilis-
tic severity scores on the normalized [0,1] interval, capturing a wide range of
distributions and reflecting the inherent variability and uncertainty in clinical
annotations. The Beta distribution, defined on the interval [0, 1], is parameter-
ized by two shape parameters, o and 3, computed as:

1-— 1 1
QHQX( M)? ﬂ:axiila (1)
1%

o2 1

where p represents the mean and o represents the standard deviation of the
distribution. These parameters enable the Beta distribution to model smooth
transitions between severity levels, making it suitable for handling sparse or
noisy data. During training, we generate continuous severity values from the
Beta distribution, providing a probabilistic representation that captures both
the clinician’s initial assessment and the inherent variability in quantification.

3.4 Model Architecture

The architecture of BetaMizer is presented in Fig. 1 and consists of a backbone,
feature generator and discriminator, IAE encoder, classifier, and regressor.
Backbone Feature Extractor: For each frame f; in the input sequence X, a
backbone feature extractor B (MobileNetV2 initialized with ImageNet weights)
processes the frame and outputs a feature vector fi € R?, where d is the dimen-
sionality of the feature space.
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Fig.1: Overview of BetaMizer: The backbone B extracts features, which are
transformed into a normal distribution by the generator H. A transformer with
positional embeddings encodes, classifies, and regresses IAE severity, while the
discriminator D ensures feature normalization.

Normalized Feature Generator and Discriminator: A generator H trans-
forms the backbone features into normally distributed features f; ~ AN(0,1).
The generator is implemented as a fully connected neural network (FCNN) with
learnable parameters 0. A discriminator D enforces that the generated features
follow a standard normal distribution by classifying them as real or fake.
Transformer Encoder with Regression Tokens: The generated features ﬁ
are passed through a transformer encoder, which incorporates positional embed-
dings and three regression tokens Tgr,, Tymr, Iy for bleeding, mechanical injury,
and thermal injury, respectively. The transformer applies self-attention to cap-
ture temporal dependencies across frames.

IAFE Classifier and Regressor: The pooled features are passed into a bi-
nary classifier @ for IAE detection. The regression tokens are used to predict
continuous severity score for each TAE using the regression module. We use mul-
tiple regression heads to enable the detection of overlapping events with varying
severity levels.

4 Experimental Setup

Implementation and Training. We use MobileNetV2 (feature level 5) as the
backbone for feature extraction. The discriminator and generator in BetaMizer
are implemented as fully convolutional networks, while the IAE classifier consists
of a single convolutional layer, adaptive average pooling, and a linear layer. The
transformer encoder has a projection depth of 128 with 4 transformation layers.
The model is trained adversarially for the discriminator and generator, followed
by freezing the generator to train the remaining components for 30 epochs.
Three loss functions are used: the adversarial loss trains the discriminator to
distinguish between real and generated features, while the generator aims to
fool the discriminator. The classification loss trains the IAE classifier to detect
adverse events using binary cross-entropy. The sampled regression loss trains the
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Table 3: IAE classification results of our model in comparison of existing methods
and baselines on 5 seconds clip over the whole testing set

Model Bleeding Mechanical injury Thermal injury Overall IAE

F1 PPV NPV F1 PPV NPV F1 PPV NPV F1 PPV NPV
ResNet18 [8] 0.72 0.71 0.77 0.63 0.62 0.59 0.70 0.72 0.66 0.68 0.66 0.67
MobileNetV2 [19] 0.71 0.72 0.76 0.61 0.66 0.61 0.72 0.70 0.71 0.68 0.68 0.69
sMSTCN [20] 0.75 0.71 0.77 0.64 0.65 0.61 0.75 0.71 0.79 0.71  0.69 0.72
FRCNN [9] 0.76 0.73 0.78 0.68 0.67 0.60 0.74 0.72 0.77 0.72 0.70 0.71
Ours (Genless) 0.72 0.71 0.76 0.65 0.66 0.59 0.72 0.71 0.73 0.69 0.69 0.70
Ours 0.81 0.76 0.82 0.70 0.69 0.63 0.77 0.74 0.77 0.76 0.73 0.84

transformer to predict severity scores by minimizing mean squared error (MSE)
on Beta-distributed ground truth labels, which are uniformly sampled across
event classes and severity levels. We train our model on batches of 128 x 128
spatial resolution images (batch size = 32), which offers a practical balance
between performance and computational cost. Optimization is performed using
Adam with a learning rate A = 5 x 1075, All experiments are conducted on a
single RTX3060 GPU using the MultiBypass140 dataset.

Baselines. We evaluate BetaMixer against four baselines: two frame-based
models (ResNet18 [8] and MobileNetV2 [19]) and two temporal-based models
(sMSTCN [20] and FRCNN [9]). ResNet18 is chosen for its deep residual struc-
ture, which effectively learns complex features, while MobileNet V2 is selected for
its lightweight design, making it suitable for on-device inference. The temporal-
based models have been previously explored for IAE detection tasks [9,20]. All
baselines are adapted to support severity regression using an extra linear layer.

Evaluation Metrics. We evaluate BetaMixer using standard metrics, includ-
ing F1 score, recall, and Mean Squared Error (MSE), to assess performance
on imbalanced datasets. The F1 score is weighted with severity-based weights
[0.02,0.06,0.12,0.19,0.26, 0.33] to balance sensitivity and specificity. For contin-
uous severity prediction, thresholds of 0.5 (classification) and (0.2,0.4,0.6,0.8)
(regression) are applied. Additionally, we use clinically relevant metrics: Clas-
sification Delay Time (CDT), Positive Predictive Value (PPV), and Negative
Predictive Value (NPV). CDT measures the delay between the first occurrence
of an event and its correct prediction. PPV evaluates the accuracy of predicting
severe events (levels > 3), while NPV assesses the prediction of non-severe events
(levels < 1), ensuring minimal unnecessary interventions.

5 Results and Discussion

Our proposed BetaMixer model demonstrates superior performance in IAE clas-
sification and severity regression compared to existing baselines, as shown in
Tables 3 and 4. Overall, BetaMizer achieves a +4% improvement in F1 score,
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Table 4: Result of IAE classification (F1/recall) and regression (MSE)

Model F11 Recall 1 MSE |

ResNet18 [8] 0.68+0.12 0.76+0.15 0.30+0.14
MobileNetV2 [19] 0.68+0.18 0.74+0.13 0.3240.20
sMSTCN [20] 0.714+0.14 0.794+0.12 0.284+0.16
FRCNN [9] 0.724+0.15 0.78+0.16 0.264+0.19
Ours 0.76+0.12 0.81+0.14 0.23+0.15

Table 5: IAE regression results of our model for k = 5 for different severity levels
in terms of mean squared error on the testing set

Model Bleeding Mechanical injury Thermal injury
0 1 2 3 4 0 1 3 0 1 3 5

ResNet18 [8] 047 0.26 0.31 0.28 0.29 0.27 0.19 0.27 0.25 0.20 0.20 0.69
MobileNetV2 [19] 0.51 0.27 0.31 0.29 0.30 0.29 0.23 0.29 0.27 0.23 0.21 0.68
sMSTCN [20] 0.35 0.25 0.32 0.30 0.29 0.21 0.22 0.20 0.23 0.17 0.23 0.63
FRCNN [9] 0.35 0.22 0.30 0.28 0.27 0.19 0.15 0.21 0.19 0.18 0.23 0.65
Ours (Genless) 0.34 0.23 0.30 0.29 0.28 0.22 0.14 0.21 0.19 0.17 0.24 0.61
Ours 0.30 0.21 0.26 0.24 0.25 0.19 0.10 0.18 0.17 0.14 0.19 0.57

+3% in recall, +3% in PPV, and +13% in NPV. Notably, it excels in detecting
and quantifying bleeding and mechanical injury, achieving the best scores across
all metrics. For thermal injury, while the NPV is slightly lower (—2%) compared
to FRCNN, BetaMizer outperforms in PPV and F1 score, likely due to the pres-
ence of smoke from coagulation tools, which serves as a strong visual indicator
for this TAE. In terms of severity regression (Table 5), BetaMizer consistently
performs well across all TAE categories. It achieves the lowest mean squared error
(MSE) of 0.2 for level 1 bleeding and 0.1 for level 1 mechanical injury. However,
predicting higher-severity thermal injury (level 5) remains challenging due to the
absence of such samples in the training set. This highlights the need for more
diverse training data to improve performance on rare, high-severity events.

The Classification Delay Time (CDT) metric, evaluated in Table 6, further
underscores the effectiveness of BetaMizer. It achieves the lowest CDT for bleed-
ing (1.31) and mechanical injury (1.12), outperforming sMSTCN and FRCNN.
For thermal injury, the CDT is slightly higher, indicating room for improvement
in detecting this specific IAE. These results demonstrate the model’s ability to
provide timely predictions, which is critical for intraoperative decision-making.

An ablation study on the impact of input sequence length (Table 7) reveals
that a 5-frame input yields the best performance across all IAE categories, with
an F1 score of 0.76, PPV of 0.73, and NPV of 0.84. This suggests that IAEs are
temporal events best captured within short intervals, as performance degrades
with longer or shorter sequences. Evaluating BetaMixer without the generator
component (Ours (Genless) in Table 5) reveals a performance drop, underscoring
the generator’s role in feature normalization and overall accuracy improvement.
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Table 6: Classification delay time (in secs) of IAE using 5 seconds clip window.

Model Bleeding Mechanical injury Thermal injury Overall IAE
ResNet18 1.53 1.51 1.23 1.42
MobileNet 1.40 1.41 1.21 1.34
sMSTCN 1.43 1.42 1.10 1.31
FRCNN 1.41 1.23 0.91 1.27
Ours 1.31 1.12 1.13 1.23

Table 7: Performance of our model on the length of clips

Frames Bleeding Mechanical injury Thermal injury Overall IAE

F1 PPV NPV F1 PPV NPV F1 PPV NPV F1 PPV NPV
1 0.78 0.72 0.79 0.65 0.67 0.60 0.71 0.71 0.70 0.71 0.70 0.69
5 0.81 0.76 0.82 0.70 0.69 0.63 0.77 0.74 0.77 0.76 0.73 0.84
10 0.77 0.74 0.80 0.68 0.66 0.61 0.73 0.70 0.74 0.73 0.70 0.74
25 0.75 0.75 0.80 0.67 0.66 0.60 0.74 0.69 0.73 0.72 0.70 0.71

Qualitative results in Fig. 2 further validate that BetaMizer more accurately
approximates ground truth in both classification and severity regression com-
pared to baselines. From these observations, BetaMizer sets a new benchmark
for TAE detection and severity regression, demonstrating robustness in handling
imbalanced datasets and providing timely, accurate predictions. Its performance
underscores the importance of temporal modeling and continuous severity rep-
resentation in surgical Al systems.

ResNet18 FRCNN

MSTCN Ours

A 0 s
Bleeding Bleeding 'Thermal Injury Mechanical Bleeding Bleeding 'Thermal Injury Mechanical
0 4 4 Injury 3 0 4 4 Injury 3
. Bleeding severity . Thermal injury severity

. Mechanical injury severity

Fig. 2: Comparison of model predictions with the baselines. Bar length indicates
severity. Groundtruth in box.

6 Conclusions

This paper addresses the challenge of classifying and quantifying intraoperative
adverse events (IAEs), such as bleeding, thermal injury, and mechanical injury,
during laparoscopic gastric bypass surgery. To tackle data imbalance caused by
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the rarity of these events, we propose BetaMizer, a novel approach integrating
normalized feature mixing, Beta distribution-based sampling, and continuous
feature space regularization. Our method outperforms baselines in TAE classifi-
cation and severity regression, achieving superior performance across automated
and clinical metrics. An ablation study reveals optimal performance with 5-frame
inputs, emphasizing the importance of temporal modeling for short-duration
events. BetaMizer quantifies adverse events on a 0 to 5 scale with high accuracy,
mitigating data imbalance and providing a robust solution for real-time IAE de-
tection and severity assessment. While focused on Roux-en-Y gastric bypass due
to data availability, future work will explore generalizability to other surgical do-
mains and incorporate additional data sources to enhance performance. To foster
research in this direction, we released our newly generated TAE annotations as
part of the public MultiBypass140 dataset.
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